"examples/research_projects/vqgan-clip/img_processing.py" did not exist on "fbee82951f924442a7bc8c84d4ba54008d94250c"
infer.py 13.6 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
import os
import re
import time
from subprocess import CalledProcessError
import traceback
from typing import List

import numpy as np
import sentencepiece as spm
import torch
import torchaudio
from torch.nn.utils.rnn import pad_sequence
from omegaconf import OmegaConf
from tqdm import tqdm

import warnings

warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

from indextts.BigVGAN.models import BigVGAN as Generator
from indextts.gpt.model import UnifiedVoice
from indextts.utils.checkpoint import load_checkpoint
from indextts.utils.feature_extractors import MelSpectrogramFeatures

from indextts.utils.front import TextNormalizer, TextTokenizer


class IndexTTS:
    def __init__(
        self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=True, device=None, use_cuda_kernel=None,
    ):
        """
        Args:
            cfg_path (str): path to the config file.
            model_dir (str): path to the model directory.
            is_fp16 (bool): whether to use fp16.
            device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS.
            use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device.
        """
        if device is not None:
            self.device = device
            self.is_fp16 = False if device == "cpu" else is_fp16
            self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda")
        elif torch.cuda.is_available():
            self.device = "cuda:0"
            self.is_fp16 = is_fp16
            self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel
        elif hasattr(torch, "mps") and torch.backends.mps.is_available():
            self.device = "mps"
            self.is_fp16 = False # Use float16 on MPS is overhead than float32
            self.use_cuda_kernel = False
        else:
            self.device = "cpu"
            self.is_fp16 = False
            self.use_cuda_kernel = False
            print(">> Be patient, it may take a while to run in CPU mode.")

        self.cfg = OmegaConf.load(cfg_path)
        self.model_dir = model_dir
        self.dtype = torch.float16 if self.is_fp16 else None
        self.stop_mel_token = self.cfg.gpt.stop_mel_token

        self.gpt = UnifiedVoice(**self.cfg.gpt)
        self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint)
        load_checkpoint(self.gpt, self.gpt_path)
        self.gpt = self.gpt.to(self.device)
        if self.is_fp16:
            self.gpt.eval().half()
        else:
            self.gpt.eval()
        print(">> GPT weights restored from:", self.gpt_path)

        if self.use_cuda_kernel:
            # preload the CUDA kernel for BigVGAN
            try:
                from indextts.BigVGAN.alias_free_activation.cuda import load

                anti_alias_activation_cuda = load.load()
                print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda)
            except Exception as ex:
                traceback.print_exc()
                print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.")
                self.use_cuda_kernel = False
        self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel)
        self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint)
        vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu")
        self.bigvgan.load_state_dict(vocoder_dict["generator"])
        self.bigvgan = self.bigvgan.to(self.device)
        # remove weight norm on eval mode
        self.bigvgan.remove_weight_norm()
        self.bigvgan.eval()
        print(">> bigvgan weights restored from:", self.bigvgan_path)
        self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"])
        self.normalizer = TextNormalizer()
        self.normalizer.load()
        print(">> TextNormalizer loaded")
        self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer)
        print(">> bpe model loaded from:", self.bpe_path)
        # 缓存参考音频mel:
        self.cache_audio_prompt = None
        self.cache_cond_mel = None
        # 进度引用显示(可选)
        self.gr_progress = None

    def remove_long_silence(self, codes: torch.Tensor, latent: torch.Tensor, silent_token=52, max_consecutive=30):
        code_lens = []
        codes_list = []
        device = codes.device
        dtype = codes.dtype
        isfix = False
        for i in range(0, codes.shape[0]):
            code = codes[i]
            if self.cfg.gpt.stop_mel_token not in code:
                code_lens.append(len(code))
                len_ = len(code)
            else:
                # len_ = code.cpu().tolist().index(8193)+1
                len_ = (code == self.stop_mel_token).nonzero(as_tuple=False)[0] + 1
                len_ = len_ - 2

            count = torch.sum(code == silent_token).item()
            if count > max_consecutive:
                code = code.cpu().tolist()
                ncode = []
                n = 0
                for k in range(0, len_):
                    if code[k] != silent_token:
                        ncode.append(code[k])
                        n = 0
                    elif code[k] == silent_token and n < 10:
                        ncode.append(code[k])
                        n += 1
                    # if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52):
                    #    n += 1
                len_ = len(ncode)
                ncode = torch.LongTensor(ncode)
                codes_list.append(ncode.to(device, dtype=dtype))
                isfix = True
                # codes[i] = self.stop_mel_token
                # codes[i, 0:len_] = ncode
            else:
                codes_list.append(codes[i])
            code_lens.append(len_)

        codes = pad_sequence(codes_list, batch_first=True) if isfix else codes[:, :-2]
        code_lens = torch.LongTensor(code_lens).to(device, dtype=dtype)
        return codes, code_lens

    def _set_gr_progress(self, value, desc):
        if self.gr_progress is not None:
            self.gr_progress(value, desc=desc)

    # 原始推理模式
    def infer(self, audio_prompt, text, output_path, verbose=False):
        print(">> start inference...")
        self._set_gr_progress(0, "start inference...")
        if verbose:
            print(f"origin text:{text}")
        start_time = time.perf_counter()

        # 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度
        if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt:
            audio, sr = torchaudio.load(audio_prompt)
            audio = torch.mean(audio, dim=0, keepdim=True)
            if audio.shape[0] > 1:
                audio = audio[0].unsqueeze(0)
            audio = torchaudio.transforms.Resample(sr, 24000)(audio)
            cond_mel = MelSpectrogramFeatures()(audio).to(self.device)
            cond_mel_frame = cond_mel.shape[-1]
            if verbose:
                print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype)

            self.cache_audio_prompt = audio_prompt
            self.cache_cond_mel = cond_mel
        else:
            cond_mel = self.cache_cond_mel
            cond_mel_frame = cond_mel.shape[-1]
            pass

        auto_conditioning = cond_mel
        text_tokens_list = self.tokenizer.tokenize(text)
        sentences = self.tokenizer.split_sentences(text_tokens_list)
        if verbose:
            print("text token count:", len(text_tokens_list))
            print("sentences count:", len(sentences))
            print(*sentences, sep="\n")
        top_p = 0.8
        top_k = 30
        temperature = 1.0
        autoregressive_batch_size = 1
        length_penalty = 0.0
        num_beams = 1
        repetition_penalty = 10.0
        max_mel_tokens = 600
        sampling_rate = 24000
        # lang = "EN"
        # lang = "ZH"
        wavs = []
        gpt_gen_time = 0
        bigvgan_time = 0

        speech_conditioning_latent = self.gpt.get_conditioning(
            auto_conditioning.half(),
            torch.tensor([auto_conditioning.shape[-1]], device=self.device)
        )

        for sent in sentences:
            text_tokens = self.tokenizer.convert_tokens_to_ids(sent)
            text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0)
            # text_tokens = F.pad(text_tokens, (0, 1))  # This may not be necessary.
            # text_tokens = F.pad(text_tokens, (1, 0), value=0)
            # text_tokens = F.pad(text_tokens, (0, 1), value=1)
            if verbose:
                print(text_tokens)
                print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}")
                # debug tokenizer
                text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist())
                print("text_token_syms is same as sentence tokens", text_token_syms == sent)

            # text_len = torch.IntTensor([text_tokens.size(1)], device=text_tokens.device)
            # print(text_len)

            m_start_time = time.perf_counter()
            with torch.no_grad():
                with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype):
                    codes, latent = self.gpt.inference_speech(speech_conditioning_latent, text_tokens,
                                                        cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]],
                                                                                      device=text_tokens.device),
                                                        # text_lengths=text_len,
                                                        do_sample=True,
                                                        top_p=top_p,
                                                        top_k=top_k,
                                                        temperature=temperature,
                                                        num_return_sequences=autoregressive_batch_size,
                                                        length_penalty=length_penalty,
                                                        num_beams=num_beams,
                                                        repetition_penalty=repetition_penalty,
                                                        max_generate_length=max_mel_tokens)
                gpt_gen_time += time.perf_counter() - m_start_time
                
                # code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype)
                # if verbose:
                #     print(codes, type(codes))
                #     print(f"codes shape: {codes.shape}, codes type: {codes.dtype}")
                #     print(f"code len: {code_lens}")

                # # remove ultra-long silence if exits
                # # temporarily fix the long silence bug.
                # codes, code_lens = self.remove_long_silence(codes, latent, silent_token=52, max_consecutive=30)
                # if verbose:
                #     print(codes, type(codes))
                #     print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}")
                #     print(f"code len: {code_lens}")

                m_start_time = time.perf_counter()
                wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2))
                bigvgan_time += time.perf_counter() - m_start_time
                wav = wav.squeeze(1)

                wav = torch.clamp(32767 * wav, -32767.0, 32767.0)
                print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max())
                # wavs.append(wav[:, :-512])
                wavs.append(wav.cpu())  # to cpu before saving
        end_time = time.perf_counter()

        wav = torch.cat(wavs, dim=1)
        wav_length = wav.shape[-1] / sampling_rate
        print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds")
        print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds")
        print(f">> bigvgan_time: {bigvgan_time:.2f} seconds")
        print(f">> Total inference time: {end_time - start_time:.2f} seconds")
        print(f">> Generated audio length: {wav_length:.2f} seconds")
        print(f">> RTF: {(end_time - start_time) / wav_length:.4f}")

        # save audio
        wav = wav.cpu()  # to cpu
        if output_path:
            # 直接保存音频到指定路径中
            if os.path.isfile(output_path):
                os.remove(output_path)
                print(">> remove old wav file:", output_path)
            if os.path.dirname(output_path) != "":
                os.makedirs(os.path.dirname(output_path), exist_ok=True)
            torchaudio.save(output_path, wav.type(torch.int16), sampling_rate)
            print(">> wav file saved to:", output_path)
            return output_path
        else:
            # 返回以符合Gradio的格式要求
            wav_data = wav.type(torch.int16)
            wav_data = wav_data.numpy().T
            return (sampling_rate, wav_data)


if __name__ == "__main__":
    prompt_wav="test_data/input.wav"
    #text="晕 XUAN4 是 一 种 GAN3 觉"
    #text='大家好,我现在正在bilibili 体验 ai 科技,说实话,来之前我绝对想不到!AI技术已经发展到这样匪夷所思的地步了!'
    text="There is a vehicle arriving in dock number 7?"

    tts = IndexTTS(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=True, use_cuda_kernel=False)
    tts.infer(audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)