import os import re import time from subprocess import CalledProcessError import traceback from typing import List import numpy as np import sentencepiece as spm import torch import torchaudio from torch.nn.utils.rnn import pad_sequence from omegaconf import OmegaConf from tqdm import tqdm import warnings warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=UserWarning) from indextts.BigVGAN.models import BigVGAN as Generator from indextts.gpt.model import UnifiedVoice from indextts.utils.checkpoint import load_checkpoint from indextts.utils.feature_extractors import MelSpectrogramFeatures from indextts.utils.front import TextNormalizer, TextTokenizer class IndexTTS: def __init__( self, cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=True, device=None, use_cuda_kernel=None, ): """ Args: cfg_path (str): path to the config file. model_dir (str): path to the model directory. is_fp16 (bool): whether to use fp16. device (str): device to use (e.g., 'cuda:0', 'cpu'). If None, it will be set automatically based on the availability of CUDA or MPS. use_cuda_kernel (None | bool): whether to use BigVGan custom fused activation CUDA kernel, only for CUDA device. """ if device is not None: self.device = device self.is_fp16 = False if device == "cpu" else is_fp16 self.use_cuda_kernel = use_cuda_kernel is not None and use_cuda_kernel and device.startswith("cuda") elif torch.cuda.is_available(): self.device = "cuda:0" self.is_fp16 = is_fp16 self.use_cuda_kernel = use_cuda_kernel is None or use_cuda_kernel elif hasattr(torch, "mps") and torch.backends.mps.is_available(): self.device = "mps" self.is_fp16 = False # Use float16 on MPS is overhead than float32 self.use_cuda_kernel = False else: self.device = "cpu" self.is_fp16 = False self.use_cuda_kernel = False print(">> Be patient, it may take a while to run in CPU mode.") self.cfg = OmegaConf.load(cfg_path) self.model_dir = model_dir self.dtype = torch.float16 if self.is_fp16 else None self.stop_mel_token = self.cfg.gpt.stop_mel_token self.gpt = UnifiedVoice(**self.cfg.gpt) self.gpt_path = os.path.join(self.model_dir, self.cfg.gpt_checkpoint) load_checkpoint(self.gpt, self.gpt_path) self.gpt = self.gpt.to(self.device) if self.is_fp16: self.gpt.eval().half() else: self.gpt.eval() print(">> GPT weights restored from:", self.gpt_path) if self.use_cuda_kernel: # preload the CUDA kernel for BigVGAN try: from indextts.BigVGAN.alias_free_activation.cuda import load anti_alias_activation_cuda = load.load() print(">> Preload custom CUDA kernel for BigVGAN", anti_alias_activation_cuda) except Exception as ex: traceback.print_exc() print(">> Failed to load custom CUDA kernel for BigVGAN. Falling back to torch.") self.use_cuda_kernel = False self.bigvgan = Generator(self.cfg.bigvgan, use_cuda_kernel=self.use_cuda_kernel) self.bigvgan_path = os.path.join(self.model_dir, self.cfg.bigvgan_checkpoint) vocoder_dict = torch.load(self.bigvgan_path, map_location="cpu") self.bigvgan.load_state_dict(vocoder_dict["generator"]) self.bigvgan = self.bigvgan.to(self.device) # remove weight norm on eval mode self.bigvgan.remove_weight_norm() self.bigvgan.eval() print(">> bigvgan weights restored from:", self.bigvgan_path) self.bpe_path = os.path.join(self.model_dir, self.cfg.dataset["bpe_model"]) self.normalizer = TextNormalizer() self.normalizer.load() print(">> TextNormalizer loaded") self.tokenizer = TextTokenizer(self.bpe_path, self.normalizer) print(">> bpe model loaded from:", self.bpe_path) # 缓存参考音频mel: self.cache_audio_prompt = None self.cache_cond_mel = None # 进度引用显示(可选) self.gr_progress = None def remove_long_silence(self, codes: torch.Tensor, latent: torch.Tensor, silent_token=52, max_consecutive=30): code_lens = [] codes_list = [] device = codes.device dtype = codes.dtype isfix = False for i in range(0, codes.shape[0]): code = codes[i] if self.cfg.gpt.stop_mel_token not in code: code_lens.append(len(code)) len_ = len(code) else: # len_ = code.cpu().tolist().index(8193)+1 len_ = (code == self.stop_mel_token).nonzero(as_tuple=False)[0] + 1 len_ = len_ - 2 count = torch.sum(code == silent_token).item() if count > max_consecutive: code = code.cpu().tolist() ncode = [] n = 0 for k in range(0, len_): if code[k] != silent_token: ncode.append(code[k]) n = 0 elif code[k] == silent_token and n < 10: ncode.append(code[k]) n += 1 # if (k == 0 and code[k] == 52) or (code[k] == 52 and code[k-1] == 52): # n += 1 len_ = len(ncode) ncode = torch.LongTensor(ncode) codes_list.append(ncode.to(device, dtype=dtype)) isfix = True # codes[i] = self.stop_mel_token # codes[i, 0:len_] = ncode else: codes_list.append(codes[i]) code_lens.append(len_) codes = pad_sequence(codes_list, batch_first=True) if isfix else codes[:, :-2] code_lens = torch.LongTensor(code_lens).to(device, dtype=dtype) return codes, code_lens def _set_gr_progress(self, value, desc): if self.gr_progress is not None: self.gr_progress(value, desc=desc) # 原始推理模式 def infer(self, audio_prompt, text, output_path, verbose=False): print(">> start inference...") self._set_gr_progress(0, "start inference...") if verbose: print(f"origin text:{text}") start_time = time.perf_counter() # 如果参考音频改变了,才需要重新生成 cond_mel, 提升速度 if self.cache_cond_mel is None or self.cache_audio_prompt != audio_prompt: audio, sr = torchaudio.load(audio_prompt) audio = torch.mean(audio, dim=0, keepdim=True) if audio.shape[0] > 1: audio = audio[0].unsqueeze(0) audio = torchaudio.transforms.Resample(sr, 24000)(audio) cond_mel = MelSpectrogramFeatures()(audio).to(self.device) cond_mel_frame = cond_mel.shape[-1] if verbose: print(f"cond_mel shape: {cond_mel.shape}", "dtype:", cond_mel.dtype) self.cache_audio_prompt = audio_prompt self.cache_cond_mel = cond_mel else: cond_mel = self.cache_cond_mel cond_mel_frame = cond_mel.shape[-1] pass auto_conditioning = cond_mel text_tokens_list = self.tokenizer.tokenize(text) sentences = self.tokenizer.split_sentences(text_tokens_list) if verbose: print("text token count:", len(text_tokens_list)) print("sentences count:", len(sentences)) print(*sentences, sep="\n") top_p = 0.8 top_k = 30 temperature = 1.0 autoregressive_batch_size = 1 length_penalty = 0.0 num_beams = 1 repetition_penalty = 10.0 max_mel_tokens = 600 sampling_rate = 24000 # lang = "EN" # lang = "ZH" wavs = [] gpt_gen_time = 0 bigvgan_time = 0 speech_conditioning_latent = self.gpt.get_conditioning( auto_conditioning.half(), torch.tensor([auto_conditioning.shape[-1]], device=self.device) ) for sent in sentences: text_tokens = self.tokenizer.convert_tokens_to_ids(sent) text_tokens = torch.tensor(text_tokens, dtype=torch.int32, device=self.device).unsqueeze(0) # text_tokens = F.pad(text_tokens, (0, 1)) # This may not be necessary. # text_tokens = F.pad(text_tokens, (1, 0), value=0) # text_tokens = F.pad(text_tokens, (0, 1), value=1) if verbose: print(text_tokens) print(f"text_tokens shape: {text_tokens.shape}, text_tokens type: {text_tokens.dtype}") # debug tokenizer text_token_syms = self.tokenizer.convert_ids_to_tokens(text_tokens[0].tolist()) print("text_token_syms is same as sentence tokens", text_token_syms == sent) # text_len = torch.IntTensor([text_tokens.size(1)], device=text_tokens.device) # print(text_len) m_start_time = time.perf_counter() with torch.no_grad(): with torch.amp.autocast(text_tokens.device.type, enabled=self.dtype is not None, dtype=self.dtype): codes, latent = self.gpt.inference_speech(speech_conditioning_latent, text_tokens, cond_mel_lengths=torch.tensor([auto_conditioning.shape[-1]], device=text_tokens.device), # text_lengths=text_len, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_return_sequences=autoregressive_batch_size, length_penalty=length_penalty, num_beams=num_beams, repetition_penalty=repetition_penalty, max_generate_length=max_mel_tokens) gpt_gen_time += time.perf_counter() - m_start_time # code_lens = torch.tensor([codes.shape[-1]], device=codes.device, dtype=codes.dtype) # if verbose: # print(codes, type(codes)) # print(f"codes shape: {codes.shape}, codes type: {codes.dtype}") # print(f"code len: {code_lens}") # # remove ultra-long silence if exits # # temporarily fix the long silence bug. # codes, code_lens = self.remove_long_silence(codes, latent, silent_token=52, max_consecutive=30) # if verbose: # print(codes, type(codes)) # print(f"fix codes shape: {codes.shape}, codes type: {codes.dtype}") # print(f"code len: {code_lens}") m_start_time = time.perf_counter() wav, _ = self.bigvgan(latent, auto_conditioning.transpose(1, 2)) bigvgan_time += time.perf_counter() - m_start_time wav = wav.squeeze(1) wav = torch.clamp(32767 * wav, -32767.0, 32767.0) print(f"wav shape: {wav.shape}", "min:", wav.min(), "max:", wav.max()) # wavs.append(wav[:, :-512]) wavs.append(wav.cpu()) # to cpu before saving end_time = time.perf_counter() wav = torch.cat(wavs, dim=1) wav_length = wav.shape[-1] / sampling_rate print(f">> Reference audio length: {cond_mel_frame * 256 / sampling_rate:.2f} seconds") print(f">> gpt_gen_time: {gpt_gen_time:.2f} seconds") print(f">> bigvgan_time: {bigvgan_time:.2f} seconds") print(f">> Total inference time: {end_time - start_time:.2f} seconds") print(f">> Generated audio length: {wav_length:.2f} seconds") print(f">> RTF: {(end_time - start_time) / wav_length:.4f}") # save audio wav = wav.cpu() # to cpu if output_path: # 直接保存音频到指定路径中 if os.path.isfile(output_path): os.remove(output_path) print(">> remove old wav file:", output_path) if os.path.dirname(output_path) != "": os.makedirs(os.path.dirname(output_path), exist_ok=True) torchaudio.save(output_path, wav.type(torch.int16), sampling_rate) print(">> wav file saved to:", output_path) return output_path else: # 返回以符合Gradio的格式要求 wav_data = wav.type(torch.int16) wav_data = wav_data.numpy().T return (sampling_rate, wav_data) if __name__ == "__main__": prompt_wav="test_data/input.wav" #text="晕 XUAN4 是 一 种 GAN3 觉" #text='大家好,我现在正在bilibili 体验 ai 科技,说实话,来之前我绝对想不到!AI技术已经发展到这样匪夷所思的地步了!' text="There is a vehicle arriving in dock number 7?" tts = IndexTTS(cfg_path="checkpoints/config.yaml", model_dir="checkpoints", is_fp16=True, use_cuda_kernel=False) tts.infer(audio_prompt=prompt_wav, text=text, output_path="gen.wav", verbose=True)