inception_v1.py 4.75 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn

__all__ = ['InceptionV1', 'inception_v1']

# modified according to https://github.com/minghao-wu/DeepLearningFromScratch/blob/master/GoogLeNet/GoogLeNet.py
# aux_classifier and dropout


def inception_v1(**kwargs):
    return InceptionV1(**kwargs)


class Inception(nn.Module):

    def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5,
                 pool_planes):
        super(Inception, self).__init__()
        # 1x1 conv branch
        self.b1 = nn.Sequential(
            nn.Conv2d(in_planes, n1x1, kernel_size=1),
            nn.ReLU(True),
        )

        # 1x1 conv -> 3x3 conv branch
        self.b2 = nn.Sequential(
            nn.Conv2d(in_planes, n3x3red, kernel_size=1),
            nn.ReLU(True),
            nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1),
            nn.ReLU(True),
        )

        # 1x1 conv -> 5x5 conv branch
        self.b3 = nn.Sequential(
            nn.Conv2d(in_planes, n5x5red, kernel_size=1),
            nn.ReLU(True),
            nn.Conv2d(n5x5red, n5x5, kernel_size=5, padding=2),
            nn.ReLU(True),
        )

        # 3x3 pool -> 1x1 conv branch
        self.b4 = nn.Sequential(
            nn.MaxPool2d(3, stride=1, padding=1),
            nn.Conv2d(in_planes, pool_planes, kernel_size=1),
            nn.ReLU(True),
        )

    def forward(self, x):
        y1 = self.b1(x)
        y2 = self.b2(x)
        y3 = self.b3(x)
        y4 = self.b4(x)
        return torch.cat([y1, y2, y3, y4], 1)


class AuxClassifier(nn.Module):

    def __init__(self, in_channels, num_classes):
        super(AuxClassifier, self).__init__()
        self.pool1 = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv1 = nn.Sequential(
            nn.Conv2d(in_channels=in_channels, out_channels=128,
                      kernel_size=1), nn.ReLU(inplace=True))

        self.fc1 = nn.Sequential(
            nn.Linear(in_features=4 * 4 * 128, out_features=1024),
            nn.ReLU(inplace=True))
        self.drop = nn.Dropout(p=0.3)
        self.fc2 = nn.Linear(in_features=1024, out_features=num_classes)

    def forward(self, x):
        x = self.pool1(x)
        x = self.conv1(x)
        x = x.view(x.size(0), -1)
        x = self.fc1(x)
        x = self.drop(x)
        x = self.fc2(x)
        return (x)


class InceptionV1(nn.Module):

    def __init__(self, num_classes=1000, aux_classifier=True):
        super(InceptionV1, self).__init__()
        self.aux_classifier = aux_classifier
        self.c1 = nn.Sequential(
            nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3),
            nn.ReLU(True),
        )
        self.c2 = nn.Sequential(
            nn.Conv2d(64, 64, kernel_size=1, stride=1),
            nn.ReLU(True),
        )
        self.c3 = nn.Sequential(
            nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1),
            nn.ReLU(True),
        )
        self.a3 = Inception(192, 64, 96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)
        self.lrn = nn.LocalResponseNorm(2)
        self.a4 = Inception(480, 192, 96, 208, 16, 48, 64)
        if aux_classifier:
            self.aux0 = AuxClassifier(in_channels=512, num_classes=num_classes)
        self.b4 = Inception(512, 160, 112, 224, 24, 64, 64)
        self.c4 = Inception(512, 128, 128, 256, 24, 64, 64)
        self.d4 = Inception(512, 112, 144, 288, 32, 64, 64)
        if aux_classifier:
            self.aux1 = AuxClassifier(in_channels=528, num_classes=num_classes)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

        self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
        self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(7, stride=1)
        self.drop = nn.Dropout(p=0.4)
        self.linear = nn.Linear(1024, num_classes)

    def forward(self, x):
        out = self.c1(x)
        out = self.maxpool(out)
        out = self.lrn(out)
        out = self.c2(out)
        out = self.c3(out)
        out = self.lrn(out)
        out = self.maxpool(out)
        out = self.a3(out)
        out = self.b3(out)
        out = self.maxpool(out)
        out = self.a4(out)
        if self.training and self.aux_classifier:
            output0 = self.aux0(out)
        out = self.b4(out)
        out = self.c4(out)
        out = self.d4(out)
        if self.training and self.aux_classifier:
            output1 = self.aux1(out)
        out = self.e4(out)
        out = self.maxpool(out)
        out = self.a5(out)
        out = self.b5(out)
        out = self.avgpool(out)
        out = out.view(out.size(0), -1)
        out = self.drop(out)
        out = self.linear(out)
        if self.training and self.aux_classifier:
            out += (output0 + output1) * 0.3
        return out