import torch import torch.nn as nn __all__ = ['InceptionV1', 'inception_v1'] # modified according to https://github.com/minghao-wu/DeepLearningFromScratch/blob/master/GoogLeNet/GoogLeNet.py # aux_classifier and dropout def inception_v1(**kwargs): return InceptionV1(**kwargs) class Inception(nn.Module): def __init__(self, in_planes, n1x1, n3x3red, n3x3, n5x5red, n5x5, pool_planes): super(Inception, self).__init__() # 1x1 conv branch self.b1 = nn.Sequential( nn.Conv2d(in_planes, n1x1, kernel_size=1), nn.ReLU(True), ) # 1x1 conv -> 3x3 conv branch self.b2 = nn.Sequential( nn.Conv2d(in_planes, n3x3red, kernel_size=1), nn.ReLU(True), nn.Conv2d(n3x3red, n3x3, kernel_size=3, padding=1), nn.ReLU(True), ) # 1x1 conv -> 5x5 conv branch self.b3 = nn.Sequential( nn.Conv2d(in_planes, n5x5red, kernel_size=1), nn.ReLU(True), nn.Conv2d(n5x5red, n5x5, kernel_size=5, padding=2), nn.ReLU(True), ) # 3x3 pool -> 1x1 conv branch self.b4 = nn.Sequential( nn.MaxPool2d(3, stride=1, padding=1), nn.Conv2d(in_planes, pool_planes, kernel_size=1), nn.ReLU(True), ) def forward(self, x): y1 = self.b1(x) y2 = self.b2(x) y3 = self.b3(x) y4 = self.b4(x) return torch.cat([y1, y2, y3, y4], 1) class AuxClassifier(nn.Module): def __init__(self, in_channels, num_classes): super(AuxClassifier, self).__init__() self.pool1 = nn.AvgPool2d(kernel_size=5, stride=3) self.conv1 = nn.Sequential( nn.Conv2d(in_channels=in_channels, out_channels=128, kernel_size=1), nn.ReLU(inplace=True)) self.fc1 = nn.Sequential( nn.Linear(in_features=4 * 4 * 128, out_features=1024), nn.ReLU(inplace=True)) self.drop = nn.Dropout(p=0.3) self.fc2 = nn.Linear(in_features=1024, out_features=num_classes) def forward(self, x): x = self.pool1(x) x = self.conv1(x) x = x.view(x.size(0), -1) x = self.fc1(x) x = self.drop(x) x = self.fc2(x) return (x) class InceptionV1(nn.Module): def __init__(self, num_classes=1000, aux_classifier=True): super(InceptionV1, self).__init__() self.aux_classifier = aux_classifier self.c1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3), nn.ReLU(True), ) self.c2 = nn.Sequential( nn.Conv2d(64, 64, kernel_size=1, stride=1), nn.ReLU(True), ) self.c3 = nn.Sequential( nn.Conv2d(64, 192, kernel_size=3, stride=1, padding=1), nn.ReLU(True), ) self.a3 = Inception(192, 64, 96, 128, 16, 32, 32) self.b3 = Inception(256, 128, 128, 192, 32, 96, 64) self.maxpool = nn.MaxPool2d(3, stride=2, padding=1) self.lrn = nn.LocalResponseNorm(2) self.a4 = Inception(480, 192, 96, 208, 16, 48, 64) if aux_classifier: self.aux0 = AuxClassifier(in_channels=512, num_classes=num_classes) self.b4 = Inception(512, 160, 112, 224, 24, 64, 64) self.c4 = Inception(512, 128, 128, 256, 24, 64, 64) self.d4 = Inception(512, 112, 144, 288, 32, 64, 64) if aux_classifier: self.aux1 = AuxClassifier(in_channels=528, num_classes=num_classes) self.e4 = Inception(528, 256, 160, 320, 32, 128, 128) self.a5 = Inception(832, 256, 160, 320, 32, 128, 128) self.b5 = Inception(832, 384, 192, 384, 48, 128, 128) self.avgpool = nn.AvgPool2d(7, stride=1) self.drop = nn.Dropout(p=0.4) self.linear = nn.Linear(1024, num_classes) def forward(self, x): out = self.c1(x) out = self.maxpool(out) out = self.lrn(out) out = self.c2(out) out = self.c3(out) out = self.lrn(out) out = self.maxpool(out) out = self.a3(out) out = self.b3(out) out = self.maxpool(out) out = self.a4(out) if self.training and self.aux_classifier: output0 = self.aux0(out) out = self.b4(out) out = self.c4(out) out = self.d4(out) if self.training and self.aux_classifier: output1 = self.aux1(out) out = self.e4(out) out = self.maxpool(out) out = self.a5(out) out = self.b5(out) out = self.avgpool(out) out = out.view(out.size(0), -1) out = self.drop(out) out = self.linear(out) if self.training and self.aux_classifier: out += (output0 + output1) * 0.3 return out