README.md 3.87 KB
Newer Older
liucong's avatar
liucong committed
1
# GPT2
2

liucong's avatar
liucong committed
3
4
5
6
## 论文
Language Models are Unsupervised Multitask Learners

- https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
7
8

## 模型结构
liucong's avatar
liucong committed
9
第二代生成式预训练模型(Generative Pre-Training2),GPT2主要使用Transformer的Decoder模块为特征提取器,并对Transformer Decoder进行了一些改动,原本的Decoder包含了两个Multi-Head Attention结构,而GPT2只保留了Mask Multi-Head Attention。
10

liucong's avatar
liucong committed
11
<img src="./Doc/Images/GPT_03.png" style="zoom:55%;" align=middle>
liucong's avatar
liucong committed
12

liucong's avatar
liucong committed
13
## 算法原理
liucong's avatar
liucong committed
14

liucong's avatar
liucong committed
15
GPT-2中使用了掩模自注意力(masked self-attention),通过屏蔽当前位置的右边token,使模型可以更好的预测下一个token。
16

liucong's avatar
liucong committed
17
<img src="./Doc/Images/GPT_04.png" style="zoom:70%;" align=middle>
18

liucong's avatar
liucong committed
19
20
## 环境配置

liucong's avatar
liucong committed
21
### Docker(方法一)
liucong's avatar
liucong committed
22
23
24
25

拉取镜像:

```
liucong's avatar
liucong committed
26
docker pull image.sourcefind.cn:5000/dcu/admin/base/migraphx:4.3.0-ubuntu20.04-dtk24.04.1-py3.10
27
28
```

liucong's avatar
liucong committed
29
创建并启动容器,安装相关依赖:
liucong's avatar
liucong committed
30
31

```
liucong's avatar
liucong committed
32
docker run --shm-size 16g --network=host --name=gpt2_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/gpt2_migraphx:/home/gpt2_migraphx -v /opt/hyhal:/opt/hyhal:ro -it <Your Image ID> /bin/bash
liucong's avatar
liucong committed
33
34
35
36
37
38
39
40
41
42
43

# 激活dtk
source /opt/dtk/env.sh
```

### Dockerfile(方法二)

```
cd ./docker
docker build --no-cache -t gpt2_migraphx:2.0 .

liucong's avatar
liucong committed
44
docker run --shm-size 16g --network=host --name=gpt2_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/gpt2_migraphx:/home/gpt2_migraphx -v /opt/hyhal:/opt/hyhal:ro -it <Your Image ID> /bin/bash
liucong's avatar
liucong committed
45

liucong's avatar
liucong committed
46
47
# 激活dtk
source /opt/dtk/env.sh
liucong's avatar
liucong committed
48
49
```

liucong's avatar
liucong committed
50
51
52
53
## 数据集

采用交互式界面,通过输入开头诗词,GPT2模型可以推理出后续的诗句。

liucong's avatar
liucong committed
54
55
56
57
## 推理

### Python版本推理

bailuo's avatar
bailuo committed
58
本次采用GPT-2模型进行诗词生成任务,模型文件下载链接:https://pan.baidu.com/s/1KWeoUuakCZ5dualK69qCcw , 提取码:4pmh ,或者从[SCNet](http://113.200.138.88:18080/aidatasets/project-dependency/gpt2_shici)下载,并将GPT2_shici.onnx模型文件保存在Resource/文件夹下。下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。
liucong's avatar
liucong committed
59
60

#### 设置环境变量
liucong's avatar
liucong committed
61

liucong's avatar
liucong committed
62
63
64
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
liucong's avatar
liucong committed
65

liucong's avatar
liucong committed
66
#### 运行示例
liucong's avatar
liucong committed
67

liucong's avatar
liucong committed
68
```
liucong's avatar
liucong committed
69
70
# 进入gpt2 migraphx工程根目录
cd <path_to_gpt2_migraphx> 
liucong's avatar
liucong committed
71
72

# 进入示例程序目录
liucong's avatar
liucong committed
73
cd Python/
liucong's avatar
liucong committed
74
75

# 安装依赖
liucong's avatar
liucong committed
76
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
liucong's avatar
liucong committed
77

liucong's avatar
liucong committed
78
# 运行示例
liucong's avatar
liucong committed
79
python gpt2.py
80
81
```

liucong's avatar
liucong committed
82
### C++版本推理
liucong's avatar
liucong committed
83

bailuo's avatar
bailuo committed
84
本次采用GPT-2模型进行诗词生成任务,模型文件下载链接:https://pan.baidu.com/s/1KWeoUuakCZ5dualK69qCcw , 提取码:4pmh ,或者从[SCNet](http://113.200.138.88:18080/aidatasets/project-dependency/gpt2_shici)下载,并将GPT2_shici.onnx模型文件保存在Resource/文件夹下。下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
liucong's avatar
liucong committed
85

86

liucong's avatar
liucong committed
87
#### 构建工程
88
89
90
91
92

```
rbuild build -d depend
```

liucong's avatar
liucong committed
93
#### 设置环境变量
94
95
96
97

将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:

```
liucong's avatar
liucong committed
98
export LD_LIBRARY_PATH=<path_to_gpt2_migraphx>/depend/lib64/:$LD_LIBRARY_PATH
99
100
101
102
103
104
```

然后执行:

```
source ~/.bashrc
105
106
```

liucong's avatar
liucong committed
107
#### 运行示例
108
109

```python
liucong's avatar
liucong committed
110
111
# 进入gpt2 migraphx工程根目录
cd <path_to_gpt2_migraphx> 
112

liucong's avatar
liucong committed
113
# 进入build目录
liucong's avatar
liucong committed
114
cd build/
115

liucong's avatar
liucong committed
116
117
# 执行示例程序
./GPT2
118
119
```

liucong's avatar
liucong committed
120
121
122
123
## result

### python版本

liucong's avatar
liucong committed
124
<img src="./Doc/Images/result_Python.png" style="zoom:70%;" align=middle>
liucong's avatar
liucong committed
125
126

### C++版本
127

liucong's avatar
liucong committed
128
<img src="./Doc/Images/result_C++.png" style="zoom:70%;" align=middle>
129

liucong's avatar
liucong committed
130
131
132
133
## 应用场景

### 算法类别

liucong's avatar
liucong committed
134
`对话问答`
liucong's avatar
liucong committed
135
136
137

### 热点应用行业

liucong's avatar
liucong committed
138
`政府`,`零售`,`教育`,`科研`
liucong's avatar
liucong committed
139

liucong's avatar
liucong committed
140
## 源码仓库及问题反馈
141
142
143

https://developer.hpccube.com/codes/modelzoo/gpt2_migraphx

liucong's avatar
liucong committed
144
## 参考资料
145
146

https://github.com/Morizeyao/GPT2-Chinese