vllm_cli_demo.py 3.64 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
"""
This script creates a CLI demo with vllm backand for the glm-4-9b model,
allowing users to interact with the model through a command-line interface.

Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.

Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""
Rayyyyy's avatar
Rayyyyy committed
12

Rayyyyy's avatar
Rayyyyy committed
13
14
import time
import asyncio
Rayyyyy's avatar
Rayyyyy committed
15
16
import argparse

Rayyyyy's avatar
Rayyyyy committed
17
18
19
20
from transformers import AutoTokenizer
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
from typing import List, Dict

Rayyyyy's avatar
Rayyyyy committed
21
22
23
24
# add model path
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', default='THUDM/glm-4-9b')
args = parser.parse_args()
Rayyyyy's avatar
Rayyyyy committed
25

Rayyyyy's avatar
Rayyyyy committed
26
27
# MODEL_PATH = 'THUDM/glm-4-9b'
MODEL_PATH = args.model_name_or_path
Rayyyyy's avatar
Rayyyyy committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119

def load_model_and_tokenizer(model_dir: str):
    engine_args = AsyncEngineArgs(
        model=model_dir,
        tokenizer=model_dir,
        tensor_parallel_size=1,
        dtype="bfloat16",
        trust_remote_code=True,
        gpu_memory_utilization=0.3,
        enforce_eager=True,
        worker_use_ray=True,
        engine_use_ray=False,
        disable_log_requests=True
        # 如果遇见 OOM 现象,建议开启下述参数
        # enable_chunked_prefill=True,
        # max_num_batched_tokens=8192
    )
    tokenizer = AutoTokenizer.from_pretrained(
        model_dir,
        trust_remote_code=True,
        encode_special_tokens=True
    )
    engine = AsyncLLMEngine.from_engine_args(engine_args)
    return engine, tokenizer


engine, tokenizer = load_model_and_tokenizer(MODEL_PATH)


async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
    inputs = tokenizer.apply_chat_template(
        messages,
        add_generation_prompt=True,
        tokenize=False
    )
    params_dict = {
        "n": 1,
        "best_of": 1,
        "presence_penalty": 1.0,
        "frequency_penalty": 0.0,
        "temperature": temperature,
        "top_p": top_p,
        "top_k": -1,
        "use_beam_search": False,
        "length_penalty": 1,
        "early_stopping": False,
        "stop_token_ids": [151329, 151336, 151338],
        "ignore_eos": False,
        "max_tokens": max_dec_len,
        "logprobs": None,
        "prompt_logprobs": None,
        "skip_special_tokens": True,
    }
    sampling_params = SamplingParams(**params_dict)
    async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
        yield output.outputs[0].text


async def chat():
    history = []
    max_length = 8192
    top_p = 0.8
    temperature = 0.6

    print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
    while True:
        user_input = input("\nYou: ")
        if user_input.lower() in ["exit", "quit"]:
            break
        history.append([user_input, ""])

        messages = []
        for idx, (user_msg, model_msg) in enumerate(history):
            if idx == len(history) - 1 and not model_msg:
                messages.append({"role": "user", "content": user_msg})
                break
            if user_msg:
                messages.append({"role": "user", "content": user_msg})
            if model_msg:
                messages.append({"role": "assistant", "content": model_msg})

        print("\nGLM-4: ", end="")
        current_length = 0
        output = ""
        async for output in vllm_gen(messages, top_p, temperature, max_length):
            print(output[current_length:], end="", flush=True)
            current_length = len(output)
        history[-1][1] = output


if __name__ == "__main__":
    asyncio.run(chat())