Commit 9eb7f37f authored by Rayyyyy's avatar Rayyyyy
Browse files

First add

parents
*venv
*.DS_Store
*.idea/
# Contributors
None
\ No newline at end of file
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright 2024 GLM-4-9B Model Team @ Zhipu AI
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# GLM-4-9b
## 论文
`GLM: General Language Model Pretraining with Autoregressive Blank Infilling`
- https://arxiv.org/abs/2103.10360
## 模型结构
<div align=center>
<img src="./doc/transformers.jpg" witdh=300 height=400/>
</div>
## 算法原理
<div align=center>
<img src="./doc/xx.png" witdh=800 height=300/>
</div>
## 环境配置
-v 路径、docker_name和imageID根据实际情况修改
### Docker(方法一)
```bash
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-centos7.6-dtk24.04-py310
docker run -it --network=host --privileged=true --name=docker_name --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=32G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro imageID /bin/bash
cd /your_code_path/glm4-9b_pytorch
cd basic_demo
pip install -r requirements.txt
```
### Dockerfile(方法二)
```bash
cd ./docker
docker build --no-cache -t glm4-9b:latest .
docker run -it --network=host --privileged=true --name=docker_name --device=/dev/kfd --device=/dev/dri --ipc=host --shm-size=32G --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -u root -v /path/your_code_data/:/path/your_code_data/ -v /opt/hyhal/:/opt/hyhal/:ro imageID /bin/bash
cd /your_code_path/glm4-9b_pytorch
cd basic_demo
pip install -r requirements.txt
```
### Anaconda(方法三)
1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/
```bash
DTK软件栈:dtk24.04
python:python3.10
torch:2.1
deepspeed: 0.12.3+gita724046.abi0.dtk2404.torch2.1.0
```
Tips:以上dtk软件栈、python、torch等DCU相关工具版本需要严格一一对应
2、其他非特殊库直接按照下面步骤进行安装
```bash
cd basic_demo
pip install deepspeed-0.12.3+das1.0+gita724046.abi0.dtk2404.torch2.1.0-cp310-cp310-manylinux2014_x86_64.whl
pip install -r requirements.txt
```
## 数据集
### 准备数据集
对于数据文件,样例采用如下格式。这里是一个不带有工具的例子:
```
{"messages": [{"role": "user", "content": "类型#裤*材质#牛仔布*风格#性感"}, {"role": "assistant", "content": "3x1的这款牛仔裤采用浅白的牛仔面料为裤身材质,其柔然的手感和细腻的质地,在穿着舒适的同时,透露着清纯甜美的个性气质。除此之外,流畅的裤身剪裁将性感的腿部曲线彰显的淋漓尽致,不失为一款随性出街的必备单品。"}]}
```
这是一个带有工具调用的例子:
```
{"messages": [{"role": "system", "content": "", "tools": [{"type": "function", "function": {"name": "get_recommended_books", "description": "Get recommended books based on user's interests", "parameters": {"type": "object", "properties": {"interests": {"type": "array", "items": {"type": "string"}, "description": "The interests to recommend books for"}}, "required": ["interests"]}}}]}, {"role": "user", "content": "Hi, I am looking for some book recommendations. I am interested in history and science fiction."}, {"role": "assistant", "content": "{\"name\": \"get_recommended_books\", \"arguments\": {\"interests\": [\"history\", \"science fiction\"]}}"}, {"role": "observation", "content": "{\"books\": [\"Sapiens: A Brief History of Humankind by Yuval Noah Harari\", \"A Brief History of Time by Stephen Hawking\", \"Dune by Frank Herbert\", \"The Martian by Andy Weir\"]}"}, {"role": "assistant", "content": "Based on your interests in history and science fiction, I would recommend the following books: \"Sapiens: A Brief History of Humankind\" by Yuval Noah Harari, \"A Brief History of Time\" by Stephen Hawking, \"Dune\" by Frank Herbert, and \"The Martian\" by Andy Weir."}]}
```
- `system` 角色为可选角色,但若存在 `system` 角色,其必须出现在 `user`
角色之前,且一个完整的对话数据(无论单轮或者多轮对话)只能出现一次 `system` 角色。
- `tools` 字段为可选字段,若存在 `tools` 字段,其必须出现在 `system`
角色之后,且一个完整的对话数据(无论单轮或者多轮对话)只能出现一次 `tools` 字段。当 `tools` 字段存在时,`system`
角色必须存在并且 `content` 字段为空。
## 训练
1. 进入`finetune_demo`目录下,执行:
```bash
pip install -r requirements.txt
```
2. 配置文件位于configs目录下,包括以下文件:
- `deepspeed配置文件`[ds_zereo_2](./finetune_demo/configs/ds_zereo_2.json),[ds_zereo_3](./finetune_demo/configs/ds_zereo_3.json)
- `lora.yaml/ ptuning_v2.yaml / sft.yaml`: 模型不同方式的配置文件,包括模型参数、优化器参数、训练参数等。部分重要参数解释如下:
+ data_config 部分
+ train_file: 训练数据集的文件路径。
+ val_file: 验证数据集的文件路径。
+ test_file: 测试数据集的文件路径。
+ num_proc: 在加载数据时使用的进程数量。
+ max_input_length: 输入序列的最大长度。
+ max_output_length: 输出序列的最大长度。
+ training_args 部分
+ output_dir: 用于保存模型和其他输出的目录。
+ max_steps: 训练的最大步数。
+ per_device_train_batch_size: 每个设备(如 GPU)的训练批次大小。
+ dataloader_num_workers: 加载数据时使用的工作线程数量。
+ remove_unused_columns: 是否移除数据中未使用的列。
+ save_strategy: 模型保存策略(例如,每隔多少步保存一次)。
+ save_steps: 每隔多少步保存一次模型。
+ log_level: 日志级别(如 info)。
+ logging_strategy: 日志记录策略。
+ logging_steps: 每隔多少步记录一次日志。
+ per_device_eval_batch_size: 每个设备的评估批次大小。
+ evaluation_strategy: 评估策略(例如,每隔多少步进行一次评估)。
+ eval_steps: 每隔多少步进行一次评估。
+ predict_with_generate: 是否使用生成模式进行预测。
+ generation_config 部分
+ max_new_tokens: 生成的最大新 token 数量。
+ peft_config 部分
+ peft_type: 使用的参数有效调整类型 (支持 LORA 和 PREFIX_TUNING)。
+ task_type: 任务类型,这里是因果语言模型 (不要改动)。
+ Lora 参数:
+ r: LoRA 的秩。
+ lora_alpha: LoRA 的缩放因子。
+ lora_dropout: 在 LoRA 层使用的 dropout 概率。
+ P-TuningV2 参数:
+ num_virtual_tokens: 虚拟 token 的数量。
+ num_attention_heads: 2: P-TuningV2 的注意力头数(不要改动)。
+ token_dim: 256: P-TuningV2 的 token 维度(不要改动)。
### 单机单卡
```shell
python finetune_hf.py data/AdvertiseGen/ THUDM/glm-4-9b-chat configs/lora.yaml
```
### 单机多卡/多机多卡
这是使用 `deepspeed` 作为加速方案的,您需要安装 `deepspeed`
```shell
OMP_NUM_THREADS=1 torchrun --standalone --nnodes=1 --nproc_per_node=8 finetune_hf.py data/AdvertiseGen/ THUDM/glm-4-9b configs/lora.yaml
```
### 从保存点进行微调
如果按照上述方式进行训练,每次微调都会从头开始,如果你想从训练一半的模型开始微调,你可以加入第四个参数,这个参数有两种传入方式:
1. `yes`, 自动从最后一个保存的 Checkpoint开始训练
2. `XX`, 断点号数字 例 `600` 则从序号600 Checkpoint开始训练
例如,这就是一个从最后一个保存点继续微调的示例代码
```shell
python finetune_hf.py data/AdvertiseGen/ THUDM/glm-4-9b-chat configs/lora.yaml yes
```
## 推理
进入[basic_demo](./basic_demo/)目录下
### 快速调用
```
python inference.py
```
### 使用命令行与 GLM-4-9B 模型进行对话
```
python trans_cli_demo.py # GLM-4-9B-Chat
python trans_cli_vision_demo.py # GLM-4V-9B
```
### 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话
```
python trans_web_demo.py
```
### 使用 Batch 推理
```
python cli_batch_request_demo.py
```
## result
<div align=center>
<img src="./doc/xx.png" width=1500 heigh=400/>
</div>
### 精度
暂无
## 应用场景
### 算法类别
多轮对话
### 热点应用行业
家居,教育,科研
## 源码仓库及问题反馈
- https://developer.hpccube.com/codes/modelzoo/glm4-9b_pytorch
## 参考资料
- https://github.com/THUDM/GLM-4
# GLM-4
<p align="center">
🤗 <a href="https://huggingface.co/collections/THUDM/glm-4-665fcf188c414b03c2f7e3b7" target="_blank">HF Repo</a> • 🤖 <a href="https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat" target="_blank">ModelScope</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 👋 Join <a href="https://join.slack.com/t/chatglm/shared_invite/zt-25ti5uohv-A_hs~am_D3Q8XPZMpj7wwQ" target="_blank">Slack</a> and <a href="resources/WECHAT.md" target="_blank">WeChat</a>
</p>
<p align="center">
📍Experience and use a larger-scale GLM business model on the <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9">Zhipu AI Open Platform</a>
</p>
## Model Introduction
GLM-4-9B is the open-source version of the latest generation of pre-trained models in the GLM-4 series launched by Zhipu
AI. In the evaluation of data sets in semantics, mathematics, reasoning, code, and knowledge, **GLM-4-9B**
and its human preference-aligned version **GLM-4-9B-Chat** have shown superior performance beyond Llama-3-8B. In
addition to multi-round conversations, GLM-4-9B-Chat also has advanced features such as web browsing, code execution,
custom tool calls (Function Call), and long text
reasoning (supporting up to 128K context). This generation of models has added multi-language support, supporting 26
languages including Japanese, Korean, and German. We have also launched the **GLM-4-9B-Chat-1M** model that supports 1M
context length (about 2 million Chinese characters) and the multimodal model GLM-4V-9B based on GLM-4-9B.
**GLM-4V-9B** possesses dialogue capabilities in both Chinese and English at a high resolution of 1120*1120.
In various multimodal evaluations, including comprehensive abilities in Chinese and English, perception & reasoning,
text recognition, and chart understanding, GLM-4V-9B demonstrates superior performance compared to
GPT-4-turbo-2024-04-09, Gemini 1.0 Pro, Qwen-VL-Max, and Claude 3 Opus.
## Model List
| Model | Type | Seq Length | Download | Online Demo |
|------------------|------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GLM-4-9B | Base | 8K | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b) | / |
| GLM-4-9B-Chat | Chat | 128K | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat) | [🤖 ModelScope CPU](https://modelscope.cn/studios/dash-infer/GLM-4-Chat-DashInfer-Demo/summary)<br> [🤖 ModelScope vLLM](https://modelscope.cn/studios/ZhipuAI/glm-4-9b-chat-vllm/summary) |
| GLM-4-9B-Chat-1M | Chat | 1M | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat-1m) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat-1m) | / |
| GLM-4V-9B | Chat | 8K | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4v-9b) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4v-9b) | / |
## BenchMark
### Typical Tasks
| Model | AlignBench | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NaturalCodeBench |
|:--------------------|:----------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----------------:|
| Llama-3-8B-Instruct | 6.40 | 8.00 | 68.58 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
| ChatGLM3-6B | 5.18 | 5.50 | 28.1 | 66.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
| GLM-4-9B-Chat | 7.01 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
### Base Model
| Model | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
|:--------------------|:----:|:------:|:----:|:-----:|:----:|:---------:|
| Llama-3-8B | 66.6 | 51.2 | - | 45.8 | - | 33.5 |
| Llama-3-8B-Instruct | 68.4 | 51.3 | 34.2 | 79.6 | 30.0 | 62.2 |
| ChatGLM3-6B-Base | 61.4 | 69.0 | 26.8 | 72.3 | 25.7 | 58.5 |
| GLM-4-9B | 74.7 | 77.1 | 34.3 | 84.0 | 30.4 | 70.1 |
> Since `GLM-4-9B` adds some math, reasoning, and code-related instruction data during pre-training, Llama-3-8B-Instruct
> is also included in the comparison range.
### Long Context
The [needle-in-the-haystack experiment](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py) was
conducted with a context length of 1M, and the results are as follows:
![needle](resources/eval_needle.jpeg)
The long text capability was further evaluated on LongBench-Chat, and the results are as follows:
<p align="center">
<img src="resources/longbench.png" alt="Description text" style="display: block; margin: auto; width: 65%;">
</p>
### Multi Language
The tests for GLM-4-9B-Chat and Llama-3-8B-Instruct are conducted on six multilingual datasets. The test results and the
corresponding languages selected for each dataset are shown in the table below:
| Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
|:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
| M-MMLU | 49.6 | 56.6 | all |
| FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
| MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
| XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
| XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
| XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
### Function Call
Tested
on [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard).
| Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
|:-----------------------|:------------:|:-----------:|:------------:|:---------:|
| Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
| gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
| ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
| GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
### Multi-Modal
GLM-4V-9B is a multimodal language model with visual understanding capabilities. The evaluation results of its related
classic tasks are as follows:
| | **MMBench-EN-Test** | **MMBench-CN-Test** | **SEEDBench_IMG** | **MMStar** | **MMMU** | **MME** | **HallusionBench** | **AI2D** | **OCRBench** |
|----------------------------|---------------------|---------------------|-------------------|------------|----------|---------|--------------------|----------|--------------|
| **gpt-4o-2024-05-13** | 83.4 | 82.1 | 77.1 | 63.9 | 69.2 | 2310.3 | 55 | 84.6 | 736 |
| **gpt-4-turbo-2024-04-09** | 81.0 | 80.2 | 73.0 | 56.0 | 61.7 | 2070.2 | 43.9 | 78.6 | 656 |
| **gpt-4-1106-preview** | 77.0 | 74.4 | 72.3 | 49.7 | 53.8 | 1771.5 | 46.5 | 75.9 | 516 |
| **InternVL-Chat-V1.5** | 82.3 | 80.7 | 75.2 | 57.1 | 46.8 | 2189.6 | 47.4 | 80.6 | 720 |
| **LLaVA-Next-Yi-34B** | 81.1 | 79 | 75.7 | 51.6 | 48.8 | 2050.2 | 34.8 | 78.9 | 574 |
| **Step-1V** | 80.7 | 79.9 | 70.3 | 50.0 | 49.9 | 2206.4 | 48.4 | 79.2 | 625 |
| **MiniCPM-Llama3-V2.5** | 77.6 | 73.8 | 72.3 | 51.8 | 45.8 | 2024.6 | 42.4 | 78.4 | 725 |
| **Qwen-VL-Max** | 77.6 | 75.7 | 72.7 | 49.5 | 52 | 2281.7 | 41.2 | 75.7 | 684 |
| **Gemini 1.0 Pro** | 73.6 | 74.3 | 70.7 | 38.6 | 49 | 2148.9 | 45.7 | 72.9 | 680 |
| **Claude 3 Opus** | 63.3 | 59.2 | 64 | 45.7 | 54.9 | 1586.8 | 37.8 | 70.6 | 694 |
| **GLM-4V-9B** | 81.1 | 79.4 | 76.8 | 58.7 | 47.2 | 2163.8 | 46.6 | 81.1 | 786 |
## Quick call
**硬件配置和系统要求,请查看[这里](basic_demo/README_en.md)。**
### Use the following method to quickly call the GLM-4-9B-Chat language model
Use the transformers backend for inference:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
query = "你好"
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4-9b-chat",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
Use the vLLM backend for inference:
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# GLM-4-9B-Chat
# If you encounter OOM, you can try to reduce max_model_len or increase tp_size
max_model_len, tp_size = 131072, 1
model_name = "THUDM/glm-4-9b-chat"
prompt = [{"role": "user", "content": "你好"}]
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
model=model_name,
tensor_parallel_size=tp_size,
max_model_len=max_model_len,
trust_remote_code=True,
enforce_eager=True,
# if you encounter OOM in GLM-4-9B-Chat-1M, you can try to enable the following parameters
# enable_chunked_prefill=True,
# max_num_batched_tokens=8192
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
### Use the following method to quickly call the GLM-4V-9B multimodal model
Use the transformers backend for inference:
```python
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
query = 'display this image'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat mode
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
```
Note: GLM-4V-9B does not support calling using vLLM method yet.
## Complete project list
If you want to learn more about the GLM-4-9B series open source models, this open source repository provides developers
with basic GLM-4-9B usage and development code through the following content
+ [base](basic_demo/README.md): Contains
+ Interaction code using transformers and vLLM backend
+ OpenAI API backend interaction code
+ Batch reasoning code
+ [composite_demo](composite_demo/README.md): Contains
+ Fully functional demonstration code for GLM-4-9B and GLM-4V-9B open source models, including All Tools capabilities,
long document interpretation, and multimodal capabilities.
+ [fintune_demo](finetune_demo/README.md): Contains
+ PEFT (LORA, P-Tuning) fine-tuning code
+ SFT fine-tuning code
## Friendly Links
+ [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory): Efficient open-source fine-tuning framework,
already supports GLM-4-9B-Chat language model fine-tuning.
## License
+ The use of GLM-4 model weights must follow
the [Model License](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE).
+ The code in this open source repository follows the [Apache 2.0](LICENSE) license.
Please strictly follow the open source license.
## Reference
If you find our work helpful, please consider citing the following paper.
```
@inproceedings{zeng2022glm,
title={{GLM-130B:} An Open Bilingual Pre-trained Model},
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
booktitle={The Eleventh International Conference on Learning Representations,
{ICLR} 2023, Kigali, Rwanda, May 1-5, 2023},
year= {2023},
}
```
```
@inproceedings{du2022glm,
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={320--335},
year={2022}
}
```
```
@misc{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
# GLM-4
<p align="center">
🤗 <a href="https://huggingface.co/collections/THUDM/glm-4-665fcf188c414b03c2f7e3b7" target="_blank">HF Repo</a> • 🤖 <a href="https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat" target="_blank">ModelScope</a> • 🐦 <a href="https://twitter.com/thukeg" target="_blank">Twitter</a> • 👋 加入我们的 <a href="https://join.slack.com/t/chatglm/shared_invite/zt-25ti5uohv-A_hs~am_D3Q8XPZMpj7wwQ" target="_blank">Slack</a><a href="resources/WECHAT.md" target="_blank">微信</a>
</p>
<p align="center">
📍在 <a href="https://open.bigmodel.cn/?utm_campaign=open&_channel_track_key=OWTVNma9">智谱AI开放平台</a> 体验和使用更大规模的 GLM 商业模型。
</p>
Read this in [English](README_en.md)
## 模型介绍
GLM-4-9B 是智谱 AI 推出的最新一代预训练模型 GLM-4 系列中的开源版本。 在语义、数学、推理、代码和知识等多方面的数据集测评中,
**GLM-4-9B** 及其人类偏好对齐的版本 **GLM-4-9B-Chat** 均表现出超越 Llama-3-8B 的卓越性能。除了能进行多轮对话,GLM-4-9B-Chat
还具备网页浏览、代码执行、自定义工具调用(Function Call)和长文本推理(支持最大 128K 上下文)等高级功能。本代模型增加了多语言支持,支持包括日语,韩语,德语在内的
26 种语言。我们还推出了支持 1M 上下文长度(约 200 万中文字符)的 **GLM-4-9B-Chat-1M** 模型和基于 GLM-4-9B 的多模态模型
GLM-4V-9B。**GLM-4V-9B** 具备 1120 * 1120 高分辨率下的中英双语多轮对话能力,在中英文综合能力、感知推理、文字识别、图表理解等多方面多模态评测中,GLM-4V-9B
表现出超越 GPT-4-turbo-2024-04-09、Gemini
1.0 Pro、Qwen-VL-Max 和 Claude 3 Opus 的卓越性能。
## 模型列表
| Model | Type | Seq Length | Download | Online Demo |
|------------------|------|------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GLM-4-9B | Base | 8K | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b) | / |
| GLM-4-9B-Chat | Chat | 128K | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat) | [🤖 ModelScope CPU](https://modelscope.cn/studios/dash-infer/GLM-4-Chat-DashInfer-Demo/summary)<br> [🤖 ModelScope vLLM](https://modelscope.cn/studios/ZhipuAI/glm-4-9b-chat-vllm/summary) |
| GLM-4-9B-Chat-1M | Chat | 1M | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4-9b-chat-1m) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4-9b-chat-1m) | / |
| GLM-4V-9B | Chat | 8K | [🤗 Huggingface](https://huggingface.co/THUDM/glm-4v-9b) [🤖 ModelScope](https://modelscope.cn/models/ZhipuAI/glm-4v-9b) | / |
## 评测结果
### 对话模型典型任务
| Model | AlignBench | MT-Bench | IFEval | MMLU | C-Eval | GSM8K | MATH | HumanEval | NaturalCodeBench |
|:--------------------|:----------:|:--------:|:------:|:----:|:------:|:-----:|:----:|:---------:|:----------------:|
| Llama-3-8B-Instruct | 6.40 | 8.00 | 68.6 | 68.4 | 51.3 | 79.6 | 30.0 | 62.2 | 24.7 |
| ChatGLM3-6B | 5.18 | 5.50 | 28.1 | 61.4 | 69.0 | 72.3 | 25.7 | 58.5 | 11.3 |
| GLM-4-9B-Chat | 7.01 | 8.35 | 69.0 | 72.4 | 75.6 | 79.6 | 50.6 | 71.8 | 32.2 |
### 基座模型典型任务
| Model | MMLU | C-Eval | GPQA | GSM8K | MATH | HumanEval |
|:--------------------|:----:|:------:|:----:|:-----:|:----:|:---------:|
| Llama-3-8B | 66.6 | 51.2 | - | 45.8 | - | 33.5 |
| Llama-3-8B-Instruct | 68.4 | 51.3 | 34.2 | 79.6 | 30.0 | 62.2 |
| ChatGLM3-6B-Base | 61.4 | 69.0 | 26.8 | 72.3 | 25.7 | 58.5 |
| GLM-4-9B | 74.7 | 77.1 | 34.3 | 84.0 | 30.4 | 70.1 |
> 由于 `GLM-4-9B` 在预训练过程中加入了部分数学、推理、代码相关的 instruction 数据,所以将 Llama-3-8B-Instruct 也列入比较范围。
### 长文本
在 1M 的上下文长度下进行[大海捞针实验](https://github.com/LargeWorldModel/LWM/blob/main/scripts/eval_needle.py),结果如下:
![needle](resources/eval_needle.jpeg)
在 LongBench-Chat 上对长文本能力进行了进一步评测,结果如下:
<p align="center">
<img src="resources/longbench.png" alt="描述文字" style="display: block; margin: auto; width: 65%;">
</p>
### 多语言能力
在六个多语言数据集上对 GLM-4-9B-Chat 和 Llama-3-8B-Instruct 进行了测试,测试结果及数据集对应选取语言如下表
| Dataset | Llama-3-8B-Instruct | GLM-4-9B-Chat | Languages |
|:------------|:-------------------:|:-------------:|:----------------------------------------------------------------------------------------------:|
| M-MMLU | 49.6 | 56.6 | all |
| FLORES | 25.0 | 28.8 | ru, es, de, fr, it, pt, pl, ja, nl, ar, tr, cs, vi, fa, hu, el, ro, sv, uk, fi, ko, da, bg, no |
| MGSM | 54.0 | 65.3 | zh, en, bn, de, es, fr, ja, ru, sw, te, th |
| XWinograd | 61.7 | 73.1 | zh, en, fr, jp, ru, pt |
| XStoryCloze | 84.7 | 90.7 | zh, en, ar, es, eu, hi, id, my, ru, sw, te |
| XCOPA | 73.3 | 80.1 | zh, et, ht, id, it, qu, sw, ta, th, tr, vi |
### 工具调用能力
我们在 [Berkeley Function Calling Leaderboard](https://github.com/ShishirPatil/gorilla/tree/main/berkeley-function-call-leaderboard)
上进行了测试并得到了以下结果:
| Model | Overall Acc. | AST Summary | Exec Summary | Relevance |
|:-----------------------|:------------:|:-----------:|:------------:|:---------:|
| Llama-3-8B-Instruct | 58.88 | 59.25 | 70.01 | 45.83 |
| gpt-4-turbo-2024-04-09 | 81.24 | 82.14 | 78.61 | 88.75 |
| ChatGLM3-6B | 57.88 | 62.18 | 69.78 | 5.42 |
| GLM-4-9B-Chat | 81.00 | 80.26 | 84.40 | 87.92 |
### 多模态能力
GLM-4V-9B 是一个多模态语言模型,具备视觉理解能力,其相关经典任务的评测结果如下:
| | **MMBench-EN-Test** | **MMBench-CN-Test** | **SEEDBench_IMG** | **MMStar** | **MMMU** | **MME** | **HallusionBench** | **AI2D** | **OCRBench** |
|----------------------------|---------------------|---------------------|-------------------|------------|----------|---------|--------------------|----------|--------------|
| **gpt-4o-2024-05-13** | 83.4 | 82.1 | 77.1 | 63.9 | 69.2 | 2310.3 | 55.0 | 84.6 | 736 |
| **gpt-4-turbo-2024-04-09** | 81.0 | 80.2 | 73.0 | 56.0 | 61.7 | 2070.2 | 43.9 | 78.6 | 656 |
| **gpt-4-1106-preview** | 77.0 | 74.4 | 72.3 | 49.7 | 53.8 | 1771.5 | 46.5 | 75.9 | 516 |
| **InternVL-Chat-V1.5** | 82.3 | 80.7 | 75.2 | 57.1 | 46.8 | 2189.6 | 47.4 | 80.6 | 720 |
| **LLaVA-Next-Yi-34B** | 81.1 | 79.0 | 75.7 | 51.6 | 48.8 | 2050.2 | 34.8 | 78.9 | 574 |
| **Step-1V** | 80.7 | 79.9 | 70.3 | 50.0 | 49.9 | 2206.4 | 48.4 | 79.2 | 625 |
| **MiniCPM-Llama3-V2.5** | 77.6 | 73.8 | 72.3 | 51.8 | 45.8 | 2024.6 | 42.4 | 78.4 | 725 |
| **Qwen-VL-Max** | 77.6 | 75.7 | 72.7 | 49.5 | 52.0 | 2281.7 | 41.2 | 75.7 | 684 |
| **Gemini 1.0 Pro** | 73.6 | 74.3 | 70.7 | 38.6 | 49.0 | 2148.9 | 45.7 | 72.9 | 680 |
| **Claude 3 Opus** | 63.3 | 59.2 | 64.0 | 45.7 | 54.9 | 1586.8 | 37.8 | 70.6 | 694 |
| **GLM-4V-9B** | 81.1 | 79.4 | 76.8 | 58.7 | 47.2 | 2163.8 | 46.6 | 81.1 | 786 |
## 快速调用
**硬件配置和系统要求,请查看[这里](basic_demo/README.md)。**
### 使用以下方法快速调用 GLM-4-9B-Chat 语言模型
使用 transformers 后端进行推理:
```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
query = "你好"
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4-9b-chat",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
使用 vLLM 后端进行推理:
```python
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# GLM-4-9B-Chat-1M
# max_model_len, tp_size = 1048576, 4
# 如果遇见 OOM 现象,建议减少max_model_len,或者增加tp_size
max_model_len, tp_size = 131072, 1
model_name = "THUDM/glm-4-9b-chat"
prompt = [{"role": "user", "content": "你好"}]
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
llm = LLM(
model=model_name,
tensor_parallel_size=tp_size,
max_model_len=max_model_len,
trust_remote_code=True,
enforce_eager=True,
# GLM-4-9B-Chat-1M 如果遇见 OOM 现象,建议开启下述参数
# enable_chunked_prefill=True,
# max_num_batched_tokens=8192
)
stop_token_ids = [151329, 151336, 151338]
sampling_params = SamplingParams(temperature=0.95, max_tokens=1024, stop_token_ids=stop_token_ids)
inputs = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
outputs = llm.generate(prompts=inputs, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)
```
### 使用以下方法快速调用 GLM-4V-9B 多模态模型
使用 transformers 后端进行推理:
```python
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4v-9b", trust_remote_code=True)
query = '描述这张图片'
image = Image.open("your image").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat mode
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4v-9b",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
```
注意: GLM-4V-9B 暂不支持使用 vLLM 方式调用。
## 完整项目列表
如果你想更进一步了解 GLM-4-9B 系列开源模型,本开源仓库通过以下内容为开发者提供基础的 GLM-4-9B的使用和开发代码
+ [base](basic_demo/README.md): 在这里包含了
+ 使用 transformers 和 vLLM 后端的交互代码
+ OpenAI API 后端交互代码
+ Batch 推理代码
+ [composite_demo](composite_demo/README.md): 在这里包含了
+ GLM-4-9B-Chat 以及 GLM-4V-9B 开源模型的完整功能演示代码,包含了 All Tools 能力、长文档解读和多模态能力的展示。
+ [fintune_demo](finetune_demo/README.md): 在这里包含了
+ PEFT (LORA, P-Tuning) 微调代码
+ SFT 微调代码
## 友情链接
+ [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory): 高效开源微调框架,已支持 GLM-4-9B-Chat 语言模型微调。
## 协议
+ GLM-4 模型的权重的使用则需要遵循 [模型协议](https://huggingface.co/THUDM/glm-4-9b/blob/main/LICENSE)
+ 本开源仓库的代码则遵循 [Apache 2.0](LICENSE) 协议。
请您严格遵循开源协议。
## 引用
如果你觉得我们的工作有帮助的话,请考虑引用下列论文。
```
@inproceedings{zeng2022glm,
title={{GLM-130B:} An Open Bilingual Pre-trained Model},
author={Zeng, Aohan and Liu, Xiao and Du, Zhengxiao and Wang, Zihan and Lai, Hanyu and Ding, Ming and Yang, Zhuoyi and Xu, Yifan and Zheng, Wendi and Xia, Xiao and others},
booktitle={The Eleventh International Conference on Learning Representations,
{ICLR} 2023, Kigali, Rwanda, May 1-5, 2023},
year= {2023},
}
```
```
@inproceedings{du2022glm,
title={GLM: General Language Model Pretraining with Autoregressive Blank Infilling},
author={Du, Zhengxiao and Qian, Yujie and Liu, Xiao and Ding, Ming and Qiu, Jiezhong and Yang, Zhilin and Tang, Jie},
booktitle={Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
pages={320--335},
year={2022}
}
```
```
@misc{wang2023cogvlm,
title={CogVLM: Visual Expert for Pretrained Language Models},
author={Weihan Wang and Qingsong Lv and Wenmeng Yu and Wenyi Hong and Ji Qi and Yan Wang and Junhui Ji and Zhuoyi Yang and Lei Zhao and Xixuan Song and Jiazheng Xu and Bin Xu and Juanzi Li and Yuxiao Dong and Ming Ding and Jie Tang},
year={2023},
eprint={2311.03079},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
# Basic Demo
Read this in [English](README_en.md)
本 demo 中,你将体验到如何使用 GLM-4-9B 开源模型进行基本的任务。
请严格按照文档的步骤进行操作,以避免不必要的错误。
## 设备和依赖检查
### 相关推理测试数据
**本文档的数据均在以下硬件环境测试,实际运行环境需求和运行占用的显存略有不同,请以实际运行环境为准。**
测试硬件信息:
+ OS: Ubuntu 22.04
+ Memory: 512GB
+ Python: 3.12.3
+ CUDA Version: 12.3
+ GPU Driver: 535.104.05
+ GPU: NVIDIA A100-SXM4-80GB * 8
相关推理的压力测试数据如下:
**所有测试均在单张GPU上进行测试,所有显存消耗都按照峰值左右进行测算**
#### GLM-4-9B-Chat
| 精度 | 显存占用 | Prefilling / 首响 | Decode Speed | Remarks |
|------|----------|-----------------|------------------|--------------|
| BF16 | 19047MiB | 0.1554s | 27.8193 tokens/s | 输入长度为 1000 |
| BF16 | 20629MiB | 0.8199s | 31.8613 tokens/s | 输入长度为 8000 |
| BF16 | 27779MiB | 4.3554s | 14.4108 tokens/s | 输入长度为 32000 |
| BF16 | 57379MiB | 38.1467s | 3.4205 tokens/s | 输入长度为 128000 |
| 精度 | 显存占用 | Prefilling / 首响 | Decode Speed | Remarks |
|------|----------|-----------------|------------------|-------------|
| Int4 | 8251MiB | 0.1667s | 23.3903 tokens/s | 输入长度为 1000 |
| Int4 | 9613MiB | 0.8629s | 23.4248 tokens/s | 输入长度为 8000 |
| Int4 | 16065MiB | 4.3906s | 14.6553 tokens/s | 输入长度为 32000 |
### GLM-4-9B-Chat-1M
| 精度 | 显存占用 | Prefilling / 首响 | Decode Speed | Remarks |
|------|----------|-----------------|------------------|--------------|
| BF16 | 74497MiB | 98.4930s | 2.3653 tokens/s | 输入长度为 200000 |
如果您的输入超过200K,我们建议您使用vLLM后端进行多卡推理,以获得更好的性能。
#### GLM-4V-9B
| 精度 | 显存占用 | Prefilling / 首响 | Decode Speed | Remarks |
|------|----------|-----------------|------------------|------------|
| BF16 | 28131MiB | 0.1016s | 33.4660 tokens/s | 输入长度为 1000 |
| BF16 | 33043MiB | 0.7935a | 39.2444 tokens/s | 输入长度为 8000 |
| 精度 | 显存占用 | Prefilling / 首响 | Decode Speed | Remarks |
|------|----------|-----------------|------------------|------------|
| Int4 | 10267MiB | 0.1685a | 28.7101 tokens/s | 输入长度为 1000 |
| Int4 | 14105MiB | 0.8629s | 24.2370 tokens/s | 输入长度为 8000 |
### 最低硬件要求
如果您希望运行官方提供的最基础代码 (transformers 后端) 您需要:
+ Python >= 3.10
+ 内存不少于 32 GB
如果您希望运行官方提供的本文件夹的所有代码,您还需要:
+ Linux 操作系统 (Debian 系列最佳)
+ 大于 8GB 显存的,支持 CUDA 或者 ROCM 并且支持 `BF16` 推理的 GPU 设备 (A100以上GPU,V100,20以及更老的GPU架构不受支持)
安装依赖
```shell
pip install -r requirements.txt
```
## 基础功能调用
**除非特殊说明,本文件夹所有 demo 并不支持 Function Call 和 All Tools 等进阶用法**
### 使用 transformers 后端代码
+ 使用命令行与 GLM-4-9B 模型进行对话。
```shell
python trans_cli_demo.py # GLM-4-9B-Chat
python trans_cli_vision_demo.py # GLM-4V-9B
```
+ 使用 Gradio 网页端与 GLM-4-9B-Chat 模型进行对话。
```shell
python trans_web_demo.py
```
+ 使用 Batch 推理。
```shell
python cli_batch_request_demo.py
```
### 使用 vLLM 后端代码
+ 使用命令行与 GLM-4-9B-Chat 模型进行对话。
```shell
python vllm_cli_demo.py
```
+ 自行构建服务端,并使用 `OpenAI API` 的请求格式与 GLM-4-9B-Chat 模型进行对话。本 demo 支持 Function Call 和 All Tools功能。
启动服务端:
```shell
python openai_api_server.py
```
客户端请求:
```shell
python openai_api_request.py
```
## 压力测试
用户可以在自己的设备上使用本代码测试模型在 transformers后端的生成速度:
```shell
python trans_stress_test.py
```
# Basic Demo
In this demo, you will experience how to use the GLM-4-9B open source model to perform basic tasks.
Please follow the steps in the document strictly to avoid unnecessary errors.
## Device and dependency check
### Related inference test data
**The data in this document are tested in the following hardware environment. The actual operating environment
requirements and the video memory occupied by the operation are slightly different. Please refer to the actual operating
environment. **
Test hardware information:
+ OS: Ubuntu 22.04
+ Memory: 512GB
+ Python: 3.12.3
+ CUDA Version: 12.3
+ GPU Driver: 535.104.05
+ GPU: NVIDIA A100-SXM4-80GB * 8
The stress test data of relevant inference are as follows:
**All tests are performed on a single GPU, and all video memory consumption is calculated based on the peak value**
#
### GLM-4-9B-Chat
| Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
|-------|------------|------------|------------------|------------------------|
| BF16 | 19047MiB | 0.1554s | 27.8193 tokens/s | Input length is 1000 |
| BF16 | 20629MiB | 0.8199s | 31.8613 tokens/s | Input length is 8000 |
| BF16 | 27779MiB | 4.3554s | 14.4108 tokens/s | Input length is 32000 |
| BF16 | 57379MiB | 38.1467s | 3.4205 tokens/s | Input length is 128000 |
| Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
|-------|------------|------------|------------------|-----------------------|
| Int4 | 8251MiB | 0.1667s | 23.3903 tokens/s | Input length is 1000 |
| Int4 | 9613MiB | 0.8629s | 23.4248 tokens/s | Input length is 8000 |
| Int4 | 16065MiB | 4.3906s | 14.6553 tokens/s | Input length is 32000 |
### GLM-4-9B-Chat-1M
| Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
|-------|------------|------------|------------------|--------------|
| BF16 | 74497MiB | 98.4930s | 2.3653 tokens/s | 输入长度为 200000 |
If your input exceeds 200K, we recommend that you use the vLLM backend with multi gpus for inference to get better performance.
#### GLM-4V-9B
| Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
|-------|------------|------------|------------------|----------------------|
| BF16 | 28131MiB | 0.1016s | 33.4660 tokens/s | Input length is 1000 |
| BF16 | 33043MiB | 0.7935a | 39.2444 tokens/s | Input length is 8000 |
| Dtype | GPU Memory | Prefilling | Decode Speed | Remarks |
|-------|------------|------------|------------------|----------------------|
| Int4 | 10267MiB | 0.1685a | 28.7101 tokens/s | Input length is 1000 |
| Int4 | 14105MiB | 0.8629s | 24.2370 tokens/s | Input length is 8000 |
### Minimum hardware requirements
If you want to run the most basic code provided by the official (transformers backend) you need:
+ Python >= 3.10
+ Memory of at least 32 GB
If you want to run all the codes in this folder provided by the official, you also need:
+ Linux operating system (Debian series is best)
+ GPU device with more than 8GB video memory, supporting CUDA or ROCM and supporting `BF16` reasoning (GPUs above A100,
V100, 20 and older GPU architectures are not supported)
Install dependencies
```shell
pip install -r requirements.txt
```
## Basic function calls
**Unless otherwise specified, all demos in this folder do not support advanced usage such as Function Call and All Tools
**
### Use transformers backend code
+ Use the command line to communicate with the GLM-4-9B model.
```shell
python trans_cli_demo.py # GLM-4-9B-Chat
python trans_cli_vision_demo.py # GLM-4V-9B
```
+ Use the Gradio web client to communicate with the GLM-4-9B-Chat model.
```shell
python trans_web_demo.py
```
+ Use Batch inference.
```shell
python cli_batch_request_demo.py
```
### Use vLLM backend code
+ Use the command line to communicate with the GLM-4-9B-Chat model.
```shell
python vllm_cli_demo.py
```
+ Build the server by yourself and use the request format of `OpenAI API` to communicate with the glm-4-9b model. This
demo supports Function Call and All Tools functions.
Start the server:
```shell
python openai_api_server.py
```
Client request:
```shell
python openai_api_request.py
```
## Stress test
Users can use this code to test the generation speed of the model on the transformers backend on their own devices:
```shell
python trans_stress_test.py
```
\ No newline at end of file
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("THUDM/glm-4-9b-chat", trust_remote_code=True)
query = "你好"
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"THUDM/glm-4-9b-chat",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
"""
This script creates a OpenAI Request demo for the glm-4-9b model, just Use OpenAI API to interact with the model.
"""
from openai import OpenAI
base_url = "http://127.0.0.1:8000/v1/"
client = OpenAI(api_key="EMPTY", base_url=base_url)
def function_chat():
messages = [{"role": "user", "content": "What's the weather like in San Francisco, Tokyo, and Paris?"}]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
# All Tools 能力: 绘图
# messages = [{"role": "user", "content": "帮我画一张天空的画画吧"}]
# tools = [{"type": "cogview"}]
#
# All Tools 能力: 联网查询
# messages = [{"role": "user", "content": "今天黄金的价格"}]
# tools = [{"type": "simple_browser"}]
response = client.chat.completions.create(
model="glm-4",
messages=messages,
tools=tools,
tool_choice="auto", # use "auto" to let the model choose the tool automatically
# tool_choice={"type": "function", "function": {"name": "my_function"}},
)
if response:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
def simple_chat(use_stream=False):
messages = [
{
"role": "system",
"content": "你是 GLM-4,请你热情回答用户的问题。",
},
{
"role": "user",
"content": "你好,请你用生动的话语给我讲一个小故事吧"
}
]
response = client.chat.completions.create(
model="glm-4",
messages=messages,
stream=use_stream,
max_tokens=1024,
temperature=0.8,
presence_penalty=1.1,
top_p=0.8)
if response:
if use_stream:
for chunk in response:
print(chunk.choices[0].delta.content)
else:
content = response.choices[0].message.content
print(content)
else:
print("Error:", response.status_code)
if __name__ == "__main__":
simple_chat()
function_chat()
import os
import time
from asyncio.log import logger
import uvicorn
import gc
import json
import torch
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
from fastapi import FastAPI, HTTPException, Response
from fastapi.middleware.cors import CORSMiddleware
from contextlib import asynccontextmanager
from typing import List, Literal, Optional, Union
from pydantic import BaseModel, Field
from transformers import AutoTokenizer, LogitsProcessor
from sse_starlette.sse import EventSourceResponse
EventSourceResponse.DEFAULT_PING_INTERVAL = 1000
MODEL_PATH = 'THUDM/glm-4-9b-chat'
MAX_MODEL_LENGTH = 8192
@asynccontextmanager
async def lifespan(app: FastAPI):
yield
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
app = FastAPI(lifespan=lifespan)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
class ModelCard(BaseModel):
id: str
object: str = "model"
created: int = Field(default_factory=lambda: int(time.time()))
owned_by: str = "owner"
root: Optional[str] = None
parent: Optional[str] = None
permission: Optional[list] = None
class ModelList(BaseModel):
object: str = "list"
data: List[ModelCard] = []
class FunctionCallResponse(BaseModel):
name: Optional[str] = None
arguments: Optional[str] = None
class ChatMessage(BaseModel):
role: Literal["user", "assistant", "system", "tool"]
content: str = None
name: Optional[str] = None
function_call: Optional[FunctionCallResponse] = None
class DeltaMessage(BaseModel):
role: Optional[Literal["user", "assistant", "system"]] = None
content: Optional[str] = None
function_call: Optional[FunctionCallResponse] = None
class EmbeddingRequest(BaseModel):
input: Union[List[str], str]
model: str
class CompletionUsage(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
class EmbeddingResponse(BaseModel):
data: list
model: str
object: str
usage: CompletionUsage
class UsageInfo(BaseModel):
prompt_tokens: int = 0
total_tokens: int = 0
completion_tokens: Optional[int] = 0
class ChatCompletionRequest(BaseModel):
model: str
messages: List[ChatMessage]
temperature: Optional[float] = 0.8
top_p: Optional[float] = 0.8
max_tokens: Optional[int] = None
stream: Optional[bool] = False
tools: Optional[Union[dict, List[dict]]] = None
tool_choice: Optional[Union[str, dict]] = "None"
repetition_penalty: Optional[float] = 1.1
class ChatCompletionResponseChoice(BaseModel):
index: int
message: ChatMessage
finish_reason: Literal["stop", "length", "function_call"]
class ChatCompletionResponseStreamChoice(BaseModel):
delta: DeltaMessage
finish_reason: Optional[Literal["stop", "length", "function_call"]]
index: int
class ChatCompletionResponse(BaseModel):
model: str
id: str
object: Literal["chat.completion", "chat.completion.chunk"]
choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
created: Optional[int] = Field(default_factory=lambda: int(time.time()))
usage: Optional[UsageInfo] = None
class InvalidScoreLogitsProcessor(LogitsProcessor):
def __call__(
self, input_ids: torch.LongTensor, scores: torch.FloatTensor
) -> torch.FloatTensor:
if torch.isnan(scores).any() or torch.isinf(scores).any():
scores.zero_()
scores[..., 5] = 5e4
return scores
def process_response(output: str, use_tool: bool = False) -> Union[str, dict]:
content = ""
for response in output.split("<|assistant|>"):
if "\n" in response:
metadata, content = response.split("\n", maxsplit=1)
else:
metadata, content = "", response
if not metadata.strip():
content = content.strip()
else:
if use_tool:
parameters = eval(content.strip())
content = {
"name": metadata.strip(),
"arguments": json.dumps(parameters, ensure_ascii=False)
}
else:
content = {
"name": metadata.strip(),
"content": content
}
return content
@torch.inference_mode()
async def generate_stream_glm4(params):
messages = params["messages"]
tools = params["tools"]
tool_choice = params["tool_choice"]
temperature = float(params.get("temperature", 1.0))
repetition_penalty = float(params.get("repetition_penalty", 1.0))
top_p = float(params.get("top_p", 1.0))
max_new_tokens = int(params.get("max_tokens", 8192))
messages = process_messages(messages, tools=tools, tool_choice=tool_choice)
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
params_dict = {
"n": 1,
"best_of": 1,
"presence_penalty": 1.0,
"frequency_penalty": 0.0,
"temperature": temperature,
"top_p": top_p,
"top_k": -1,
"repetition_penalty": repetition_penalty,
"use_beam_search": False,
"length_penalty": 1,
"early_stopping": False,
"stop_token_ids": [151329, 151336, 151338],
"ignore_eos": False,
"max_tokens": max_new_tokens,
"logprobs": None,
"prompt_logprobs": None,
"skip_special_tokens": True,
}
sampling_params = SamplingParams(**params_dict)
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id="glm-4-9b"):
output_len = len(output.outputs[0].token_ids)
input_len = len(output.prompt_token_ids)
ret = {
"text": output.outputs[0].text,
"usage": {
"prompt_tokens": input_len,
"completion_tokens": output_len,
"total_tokens": output_len + input_len
},
"finish_reason": output.outputs[0].finish_reason,
}
yield ret
gc.collect()
torch.cuda.empty_cache()
def process_messages(messages, tools=None, tool_choice="none"):
_messages = messages
messages = []
msg_has_sys = False
def filter_tools(tool_choice, tools):
function_name = tool_choice.get('function', {}).get('name', None)
if not function_name:
return []
filtered_tools = [
tool for tool in tools
if tool.get('function', {}).get('name') == function_name
]
return filtered_tools
if tool_choice != "none":
if isinstance(tool_choice, dict):
tools = filter_tools(tool_choice, tools)
if tools:
messages.append(
{
"role": "system",
"content": None,
"tools": tools
}
)
msg_has_sys = True
# add to metadata
if isinstance(tool_choice, dict) and tools:
messages.append(
{
"role": "assistant",
"metadata": tool_choice["function"]["name"],
"content": ""
}
)
for m in _messages:
role, content, func_call = m.role, m.content, m.function_call
if role == "function":
messages.append(
{
"role": "observation",
"content": content
}
)
elif role == "assistant" and func_call is not None:
for response in content.split("<|assistant|>"):
if "\n" in response:
metadata, sub_content = response.split("\n", maxsplit=1)
else:
metadata, sub_content = "", response
messages.append(
{
"role": role,
"metadata": metadata,
"content": sub_content.strip()
}
)
else:
if role == "system" and msg_has_sys:
msg_has_sys = False
continue
messages.append({"role": role, "content": content})
return messages
@app.get("/health")
async def health() -> Response:
"""Health check."""
return Response(status_code=200)
@app.get("/v1/models", response_model=ModelList)
async def list_models():
model_card = ModelCard(id="glm-4")
return ModelList(data=[model_card])
@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
if len(request.messages) < 1 or request.messages[-1].role == "assistant":
raise HTTPException(status_code=400, detail="Invalid request")
gen_params = dict(
messages=request.messages,
temperature=request.temperature,
top_p=request.top_p,
max_tokens=request.max_tokens or 1024,
echo=False,
stream=request.stream,
repetition_penalty=request.repetition_penalty,
tools=request.tools,
tool_choice=request.tool_choice,
)
logger.debug(f"==== request ====\n{gen_params}")
if request.stream:
predict_stream_generator = predict_stream(request.model, gen_params)
output = await anext(predict_stream_generator)
if output:
return EventSourceResponse(predict_stream_generator, media_type="text/event-stream")
logger.debug(f"First result output:\n{output}")
function_call = None
if output and request.tools:
try:
function_call = process_response(output, use_tool=True)
except:
logger.warning("Failed to parse tool call")
# CallFunction
if isinstance(function_call, dict):
function_call = FunctionCallResponse(**function_call)
tool_response = ""
if not gen_params.get("messages"):
gen_params["messages"] = []
gen_params["messages"].append(ChatMessage(role="assistant", content=output))
gen_params["messages"].append(ChatMessage(role="tool", name=function_call.name, content=tool_response))
generate = predict(request.model, gen_params)
return EventSourceResponse(generate, media_type="text/event-stream")
else:
generate = parse_output_text(request.model, output)
return EventSourceResponse(generate, media_type="text/event-stream")
response = ""
async for response in generate_stream_glm4(gen_params):
pass
if response["text"].startswith("\n"):
response["text"] = response["text"][1:]
response["text"] = response["text"].strip()
usage = UsageInfo()
function_call, finish_reason = None, "stop"
if request.tools:
try:
function_call = process_response(response["text"], use_tool=True)
except:
logger.warning(
"Failed to parse tool call, maybe the response is not a function call(such as cogview drawing) or have been answered.")
if isinstance(function_call, dict):
finish_reason = "function_call"
function_call = FunctionCallResponse(**function_call)
message = ChatMessage(
role="assistant",
content=response["text"],
function_call=function_call if isinstance(function_call, FunctionCallResponse) else None,
)
logger.debug(f"==== message ====\n{message}")
choice_data = ChatCompletionResponseChoice(
index=0,
message=message,
finish_reason=finish_reason,
)
task_usage = UsageInfo.model_validate(response["usage"])
for usage_key, usage_value in task_usage.model_dump().items():
setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
return ChatCompletionResponse(
model=request.model,
id="", # for open_source model, id is empty
choices=[choice_data],
object="chat.completion",
usage=usage
)
async def predict(model_id: str, params: dict):
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant"),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
previous_text = ""
async for new_response in generate_stream_glm4(params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(previous_text):]
previous_text = decoded_unicode
finish_reason = new_response["finish_reason"]
if len(delta_text) == 0 and finish_reason != "function_call":
continue
function_call = None
if finish_reason == "function_call":
try:
function_call = process_response(decoded_unicode, use_tool=True)
except:
logger.warning(
"Failed to parse tool call, maybe the response is not a tool call or have been answered.")
if isinstance(function_call, dict):
function_call = FunctionCallResponse(**function_call)
delta = DeltaMessage(
content=delta_text,
role="assistant",
function_call=function_call if isinstance(function_call, FunctionCallResponse) else None,
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=delta,
finish_reason=finish_reason
)
chunk = ChatCompletionResponse(
model=model_id,
id="",
choices=[choice_data],
object="chat.completion.chunk"
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(
model=model_id,
id="",
choices=[choice_data],
object="chat.completion.chunk"
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
yield '[DONE]'
async def predict_stream(model_id, gen_params):
output = ""
is_function_call = False
has_send_first_chunk = False
async for new_response in generate_stream_glm4(gen_params):
decoded_unicode = new_response["text"]
delta_text = decoded_unicode[len(output):]
output = decoded_unicode
if not is_function_call and len(output) > 7:
is_function_call = output and 'get_' in output
if is_function_call:
continue
finish_reason = new_response["finish_reason"]
if not has_send_first_chunk:
message = DeltaMessage(
content="",
role="assistant",
function_call=None,
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=message,
finish_reason=finish_reason
)
chunk = ChatCompletionResponse(
model=model_id,
id="",
choices=[choice_data],
created=int(time.time()),
object="chat.completion.chunk"
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
send_msg = delta_text if has_send_first_chunk else output
has_send_first_chunk = True
message = DeltaMessage(
content=send_msg,
role="assistant",
function_call=None,
)
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=message,
finish_reason=finish_reason
)
chunk = ChatCompletionResponse(
model=model_id,
id="",
choices=[choice_data],
created=int(time.time()),
object="chat.completion.chunk"
)
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
if is_function_call:
yield output
else:
yield '[DONE]'
async def parse_output_text(model_id: str, value: str):
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(role="assistant", content=value),
finish_reason=None
)
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
choice_data = ChatCompletionResponseStreamChoice(
index=0,
delta=DeltaMessage(),
finish_reason="stop"
)
chunk = ChatCompletionResponse(model=model_id, id="", choices=[choice_data], object="chat.completion.chunk")
yield "{}".format(chunk.model_dump_json(exclude_unset=True))
yield '[DONE]'
if __name__ == "__main__":
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
engine_args = AsyncEngineArgs(
model=MODEL_PATH,
tokenizer=MODEL_PATH,
tensor_parallel_size=1,
dtype="bfloat16",
trust_remote_code=True,
gpu_memory_utilization=0.9,
enforce_eager=True,
worker_use_ray=True,
engine_use_ray=False,
disable_log_requests=True,
max_model_len=MAX_MODEL_LENGTH,
)
engine = AsyncLLMEngine.from_engine_args(engine_args)
uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)
transformers==4.40.0
huggingface-hub>=0.23.1
sentencepiece>=0.2.0
pydantic>=2.7.1
timm>=0.9.16
tiktoken>=0.7.0
accelerate>=0.30.1
sentence_transformers>=2.7.0
# web demo
gradio>=4.31.5
"""
Here is an example of using batch request glm-4-9b,
here you need to build the conversation format yourself and then call the batch function to make batch requests.
Please note that in this demo, the memory consumption is significantly higher.
"""
from typing import Optional, Union
from transformers import AutoModel, AutoTokenizer, LogitsProcessorList
MODEL_PATH = 'THUDM/glm-4-9b-chat'
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
encode_special_tokens=True)
model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True, device_map="auto").eval()
def process_model_outputs(inputs, outputs, tokenizer):
responses = []
for input_ids, output_ids in zip(inputs.input_ids, outputs):
response = tokenizer.decode(output_ids[len(input_ids):], skip_special_tokens=True).strip()
responses.append(response)
return responses
def batch(
model,
tokenizer,
messages: Union[str, list[str]],
max_input_tokens: int = 8192,
max_new_tokens: int = 8192,
num_beams: int = 1,
do_sample: bool = True,
top_p: float = 0.8,
temperature: float = 0.8,
logits_processor: Optional[LogitsProcessorList] = LogitsProcessorList(),
):
messages = [messages] if isinstance(messages, str) else messages
batched_inputs = tokenizer(messages, return_tensors="pt", padding="max_length", truncation=True,
max_length=max_input_tokens).to(model.device)
gen_kwargs = {
"max_new_tokens": max_new_tokens,
"num_beams": num_beams,
"do_sample": do_sample,
"top_p": top_p,
"temperature": temperature,
"logits_processor": logits_processor,
"eos_token_id": model.config.eos_token_id
}
batched_outputs = model.generate(**batched_inputs, **gen_kwargs)
batched_response = process_model_outputs(batched_inputs, batched_outputs, tokenizer)
return batched_response
if __name__ == "__main__":
batch_message = [
[
{"role": "user", "content": "我的爸爸和妈妈结婚为什么不能带我去"},
{"role": "assistant", "content": "因为他们结婚时你还没有出生"},
{"role": "user", "content": "我刚才的提问是"}
],
[
{"role": "user", "content": "你好,你是谁"}
]
]
batch_inputs = []
max_input_tokens = 1024
for i, messages in enumerate(batch_message):
new_batch_input = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)
max_input_tokens = max(max_input_tokens, len(new_batch_input))
batch_inputs.append(new_batch_input)
gen_kwargs = {
"max_input_tokens": max_input_tokens,
"max_new_tokens": 8192,
"do_sample": True,
"top_p": 0.8,
"temperature": 0.8,
"num_beams": 1,
}
batch_responses = batch(model, tokenizer, batch_inputs, **gen_kwargs)
for response in batch_responses:
print("=" * 10)
print(response)
"""
This script creates a CLI demo with transformers backend for the glm-4-9b model,
allowing users to interact with the model through a command-line interface.
Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.
Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""
import os
import torch
from threading import Thread
from typing import Union
from pathlib import Path
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer
)
ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
def load_model_and_tokenizer(
model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:
model_dir = Path(model_dir).expanduser().resolve()
if (model_dir / 'adapter_config.json').exists():
model = AutoPeftModelForCausalLM.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, device_map='auto')
tokenizer_dir = model.peft_config['default'].base_model_name_or_path
else:
model = AutoModelForCausalLM.from_pretrained(model_dir, trust_remote_code=trust_remote_code, device_map='auto')
tokenizer_dir = model_dir
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_dir, trust_remote_code=trust_remote_code, encode_special_tokens=True, use_fast=False
)
return model, tokenizer
model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = model.config.eos_token_id
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
if __name__ == "__main__":
history = []
max_length = 8192
top_p = 0.8
temperature = 0.6
stop = StopOnTokens()
print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["exit", "quit"]:
break
history.append([user_input, ""])
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt"
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer=tokenizer,
timeout=60,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = {
"input_ids": model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1.2,
"eos_token_id": model.config.eos_token_id,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
print("GLM-4:", end="", flush=True)
for new_token in streamer:
if new_token:
print(new_token, end="", flush=True)
history[-1][1] += new_token
history[-1][1] = history[-1][1].strip()
"""
This script creates a CLI demo with transformers backend for the glm-4v-9b model,
allowing users to interact with the model through a command-line interface.
Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.
Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""
import os
import torch
from threading import Thread
from transformers import (
AutoTokenizer,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer, AutoModel
)
from PIL import Image
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4v-9b')
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
encode_special_tokens=True
)
model = AutoModel.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
device_map="auto",
torch_dtype=torch.bfloat16).eval()
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = model.config.eos_token_id
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
if __name__ == "__main__":
history = []
max_length = 1024
top_p = 0.8
temperature = 0.6
stop = StopOnTokens()
uploaded = False
image = None
print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
image_path = input("Image Path:")
try:
image = Image.open(image_path).convert("RGB")
except:
print("Invalid image path. Continuing with text conversation.")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["exit", "quit"]:
break
history.append([user_input, ""])
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
if image and not uploaded:
messages[-1].update({"image": image})
uploaded = True
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
).to(model.device)
streamer = TextIteratorStreamer(
tokenizer=tokenizer,
timeout=60,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = {
**model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1.2,
"eos_token_id": [151329, 151336, 151338],
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
print("GLM-4:", end="", flush=True)
for new_token in streamer:
if new_token:
print(new_token, end="", flush=True)
history[-1][1] += new_token
history[-1][1] = history[-1][1].strip()
import argparse
import time
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer, BitsAndBytesConfig
import torch
from threading import Thread
MODEL_PATH = 'THUDM/glm-4-9b-chat'
def stress_test(token_len, n, num_gpu):
device = torch.device(f"cuda:{num_gpu - 1}" if torch.cuda.is_available() and num_gpu > 0 else "cpu")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
padding_side="left"
)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
trust_remote_code=True,
# quantization_config=BitsAndBytesConfig(load_in_4bit=True),
# low_cpu_mem_usage=True,
torch_dtype=torch.bfloat16
).to(device).eval()
times = []
decode_times = []
print("Warming up...")
vocab_size = tokenizer.vocab_size
warmup_token_len = 20
random_token_ids = torch.randint(3, vocab_size - 200, (warmup_token_len - 5,), dtype=torch.long)
start_tokens = [151331, 151333, 151336, 198]
end_tokens = [151337]
input_ids = torch.tensor(start_tokens + random_token_ids.tolist() + end_tokens, dtype=torch.long).unsqueeze(0).to(
device)
attention_mask = torch.ones_like(input_ids, dtype=torch.bfloat16).to(device)
position_ids = torch.arange(len(input_ids[0]), dtype=torch.bfloat16).unsqueeze(0).to(device)
warmup_inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'position_ids': position_ids
}
with torch.no_grad():
_ = model.generate(
input_ids=warmup_inputs['input_ids'],
attention_mask=warmup_inputs['attention_mask'],
max_new_tokens=2048,
do_sample=False,
repetition_penalty=1.0,
eos_token_id=[151329, 151336, 151338]
)
print("Warming up complete. Starting stress test...")
for i in range(n):
random_token_ids = torch.randint(3, vocab_size - 200, (token_len - 5,), dtype=torch.long)
input_ids = torch.tensor(start_tokens + random_token_ids.tolist() + end_tokens, dtype=torch.long).unsqueeze(
0).to(device)
attention_mask = torch.ones_like(input_ids, dtype=torch.bfloat16).to(device)
position_ids = torch.arange(len(input_ids[0]), dtype=torch.bfloat16).unsqueeze(0).to(device)
test_inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'position_ids': position_ids
}
streamer = TextIteratorStreamer(
tokenizer=tokenizer,
timeout=36000,
skip_prompt=True,
skip_special_tokens=True
)
generate_kwargs = {
"input_ids": test_inputs['input_ids'],
"attention_mask": test_inputs['attention_mask'],
"max_new_tokens": 512,
"do_sample": False,
"repetition_penalty": 1.0,
"eos_token_id": [151329, 151336, 151338],
"streamer": streamer
}
start_time = time.time()
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
first_token_time = None
all_token_times = []
for token in streamer:
current_time = time.time()
if first_token_time is None:
first_token_time = current_time
times.append(first_token_time - start_time)
all_token_times.append(current_time)
t.join()
end_time = time.time()
avg_decode_time_per_token = len(all_token_times) / (end_time - first_token_time) if all_token_times else 0
decode_times.append(avg_decode_time_per_token)
print(
f"Iteration {i + 1}/{n} - Prefilling Time: {times[-1]:.4f} seconds - Average Decode Time: {avg_decode_time_per_token:.4f} tokens/second")
torch.cuda.empty_cache()
avg_first_token_time = sum(times) / n
avg_decode_time = sum(decode_times) / n
print(f"\nAverage First Token Time over {n} iterations: {avg_first_token_time:.4f} seconds")
print(f"Average Decode Time per Token over {n} iterations: {avg_decode_time:.4f} tokens/second")
return times, avg_first_token_time, decode_times, avg_decode_time
def main():
parser = argparse.ArgumentParser(description="Stress test for model inference")
parser.add_argument('--token_len', type=int, default=1000, help='Number of tokens for each test')
parser.add_argument('--n', type=int, default=3, help='Number of iterations for the stress test')
parser.add_argument('--num_gpu', type=int, default=1, help='Number of GPUs to use for inference')
args = parser.parse_args()
token_len = args.token_len
n = args.n
num_gpu = args.num_gpu
stress_test(token_len, n, num_gpu)
if __name__ == "__main__":
main()
"""
This script creates an interactive web demo for the GLM-4-9B model using Gradio,
a Python library for building quick and easy UI components for machine learning models.
It's designed to showcase the capabilities of the GLM-4-9B model in a user-friendly interface,
allowing users to interact with the model through a chat-like interface.
"""
import os
import gradio as gr
import torch
from threading import Thread
from typing import Union
from pathlib import Path
from peft import AutoPeftModelForCausalLM, PeftModelForCausalLM
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
PreTrainedModel,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
StoppingCriteria,
StoppingCriteriaList,
TextIteratorStreamer
)
ModelType = Union[PreTrainedModel, PeftModelForCausalLM]
TokenizerType = Union[PreTrainedTokenizer, PreTrainedTokenizerFast]
MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4-9b-chat')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
def _resolve_path(path: Union[str, Path]) -> Path:
return Path(path).expanduser().resolve()
def load_model_and_tokenizer(
model_dir: Union[str, Path], trust_remote_code: bool = True
) -> tuple[ModelType, TokenizerType]:
model_dir = _resolve_path(model_dir)
if (model_dir / 'adapter_config.json').exists():
model = AutoPeftModelForCausalLM.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, device_map='auto'
)
tokenizer_dir = model.peft_config['default'].base_model_name_or_path
else:
model = AutoModelForCausalLM.from_pretrained(
model_dir, trust_remote_code=trust_remote_code, device_map='auto'
)
tokenizer_dir = model_dir
tokenizer = AutoTokenizer.from_pretrained(
tokenizer_dir, trust_remote_code=trust_remote_code, use_fast=False
)
return model, tokenizer
model, tokenizer = load_model_and_tokenizer(MODEL_PATH, trust_remote_code=True)
class StopOnTokens(StoppingCriteria):
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
stop_ids = model.config.eos_token_id
for stop_id in stop_ids:
if input_ids[0][-1] == stop_id:
return True
return False
def parse_text(text):
lines = text.split("\n")
lines = [line for line in lines if line != ""]
count = 0
for i, line in enumerate(lines):
if "```" in line:
count += 1
items = line.split('`')
if count % 2 == 1:
lines[i] = f'<pre><code class="language-{items[-1]}">'
else:
lines[i] = f'<br></code></pre>'
else:
if i > 0:
if count % 2 == 1:
line = line.replace("`", "\`")
line = line.replace("<", "&lt;")
line = line.replace(">", "&gt;")
line = line.replace(" ", "&nbsp;")
line = line.replace("*", "&ast;")
line = line.replace("_", "&lowbar;")
line = line.replace("-", "&#45;")
line = line.replace(".", "&#46;")
line = line.replace("!", "&#33;")
line = line.replace("(", "&#40;")
line = line.replace(")", "&#41;")
line = line.replace("$", "&#36;")
lines[i] = "<br>" + line
text = "".join(lines)
return text
def predict(history, max_length, top_p, temperature):
stop = StopOnTokens()
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
model_inputs = tokenizer.apply_chat_template(messages,
add_generation_prompt=True,
tokenize=True,
return_tensors="pt").to(next(model.parameters()).device)
streamer = TextIteratorStreamer(tokenizer, timeout=60, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = {
"input_ids": model_inputs,
"streamer": streamer,
"max_new_tokens": max_length,
"do_sample": True,
"top_p": top_p,
"temperature": temperature,
"stopping_criteria": StoppingCriteriaList([stop]),
"repetition_penalty": 1.2,
"eos_token_id": model.config.eos_token_id,
}
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
for new_token in streamer:
if new_token:
history[-1][1] += new_token
yield history
with gr.Blocks() as demo:
gr.HTML("""<h1 align="center">GLM-4-9B Gradio Simple Chat Demo</h1>""")
chatbot = gr.Chatbot()
with gr.Row():
with gr.Column(scale=4):
with gr.Column(scale=12):
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10, container=False)
with gr.Column(min_width=32, scale=1):
submitBtn = gr.Button("Submit")
with gr.Column(scale=1):
emptyBtn = gr.Button("Clear History")
max_length = gr.Slider(0, 32768, value=8192, step=1.0, label="Maximum length", interactive=True)
top_p = gr.Slider(0, 1, value=0.8, step=0.01, label="Top P", interactive=True)
temperature = gr.Slider(0.01, 1, value=0.6, step=0.01, label="Temperature", interactive=True)
def user(query, history):
return "", history + [[parse_text(query), ""]]
submitBtn.click(user, [user_input, chatbot], [user_input, chatbot], queue=False).then(
predict, [chatbot, max_length, top_p, temperature], chatbot
)
emptyBtn.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch(server_name="127.0.0.1", server_port=8000, inbrowser=True, share=True)
"""
This script creates a CLI demo with vllm backand for the glm-4-9b model,
allowing users to interact with the model through a command-line interface.
Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.
Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""
import time
import asyncio
from transformers import AutoTokenizer
from vllm import SamplingParams, AsyncEngineArgs, AsyncLLMEngine
from typing import List, Dict
MODEL_PATH = 'THUDM/glm-4-9b'
def load_model_and_tokenizer(model_dir: str):
engine_args = AsyncEngineArgs(
model=model_dir,
tokenizer=model_dir,
tensor_parallel_size=1,
dtype="bfloat16",
trust_remote_code=True,
gpu_memory_utilization=0.3,
enforce_eager=True,
worker_use_ray=True,
engine_use_ray=False,
disable_log_requests=True
# 如果遇见 OOM 现象,建议开启下述参数
# enable_chunked_prefill=True,
# max_num_batched_tokens=8192
)
tokenizer = AutoTokenizer.from_pretrained(
model_dir,
trust_remote_code=True,
encode_special_tokens=True
)
engine = AsyncLLMEngine.from_engine_args(engine_args)
return engine, tokenizer
engine, tokenizer = load_model_and_tokenizer(MODEL_PATH)
async def vllm_gen(messages: List[Dict[str, str]], top_p: float, temperature: float, max_dec_len: int):
inputs = tokenizer.apply_chat_template(
messages,
add_generation_prompt=True,
tokenize=False
)
params_dict = {
"n": 1,
"best_of": 1,
"presence_penalty": 1.0,
"frequency_penalty": 0.0,
"temperature": temperature,
"top_p": top_p,
"top_k": -1,
"use_beam_search": False,
"length_penalty": 1,
"early_stopping": False,
"stop_token_ids": [151329, 151336, 151338],
"ignore_eos": False,
"max_tokens": max_dec_len,
"logprobs": None,
"prompt_logprobs": None,
"skip_special_tokens": True,
}
sampling_params = SamplingParams(**params_dict)
async for output in engine.generate(inputs=inputs, sampling_params=sampling_params, request_id=f"{time.time()}"):
yield output.outputs[0].text
async def chat():
history = []
max_length = 8192
top_p = 0.8
temperature = 0.6
print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["exit", "quit"]:
break
history.append([user_input, ""])
messages = []
for idx, (user_msg, model_msg) in enumerate(history):
if idx == len(history) - 1 and not model_msg:
messages.append({"role": "user", "content": user_msg})
break
if user_msg:
messages.append({"role": "user", "content": user_msg})
if model_msg:
messages.append({"role": "assistant", "content": model_msg})
print("\nGLM-4: ", end="")
current_length = 0
output = ""
async for output in vllm_gen(messages, top_p, temperature, max_length):
print(output[current_length:], end="", flush=True)
current_length = len(output)
history[-1][1] = output
if __name__ == "__main__":
asyncio.run(chat())
*venv
*.DS_Store
*model
*.idea/
# Created by https://www.toptal.com/developers/gitignore/api/python
# Edit at https://www.toptal.com/developers/gitignore?templates=python
### Python ###
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# pdm
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
#pdm.lock
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
# in version control.
# https://pdm.fming.dev/#use-with-ide
.pdm.toml
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/
### Python Patch ###
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
poetry.toml
# ruff
.ruff_cache/
# LSP config files
pyrightconfig.json
# End of https://www.toptal.com/developers/gitignore/api/python
# GLM-4-9B Web Demo
Read this in [English](README_en.md)
![Demo webpage](assets/demo.png)
## 安装
我们建议通过 [Conda](https://docs.conda.io/en/latest/) 进行环境管理。
执行以下命令新建一个 conda 环境并安装所需依赖:
```bash
conda create -n glm-4-demo python=3.12
conda activate glm-4-demo
pip install -r requirements.txt
```
请注意,本项目需要 Python 3.10 或更高版本。
此外,使用 Code Interpreter 还需要安装 Jupyter 内核:
```bash
ipython kernel install --name glm-4-demo --user
```
您可以修改 `~/.local/share/jupyter/kernels/glm-4-demo/kernel.json` 来改变 Jupyter 内核的配置,包括内核的启动参数等。例如,若您希望在使用 All Tools 的 Python 代码执行能力时使用 Matplotlib 画图,可以在 `argv` 数组中添加 `"--matplotlib=inline"`
若要使用浏览器和搜索功能,还需要启动浏览器后端。首先,根据 [Node.js](https://nodejs.org/en/download/package-manager)
官网的指示安装 Node.js,然后安装包管理器 [PNPM](https://pnpm.io) 之后安装浏览器服务的依赖:
```bash
cd browser
npm install -g pnpm
pnpm install
```
## 运行
1. 修改 `browser/src/config.ts` 中的 `BING_SEARCH_API_KEY` 配置浏览器服务需要使用的 Bing 搜索 API Key:
```diff
--- a/browser/src/config.ts
+++ b/browser/src/config.ts
@@ -3,7 +3,7 @@ export default {
BROWSER_TIMEOUT: 10000,
BING_SEARCH_API_URL: 'https://api.bing.microsoft.com/v7.0',
- BING_SEARCH_API_KEY: '',
+ BING_SEARCH_API_KEY: '<PUT_YOUR_BING_SEARCH_KEY_HERE>',
HOST: 'localhost',
PORT: 3000,
```
2. 文生图功能需要调用 CogView API。修改 `src/tools/config.py`
,提供文生图功能需要使用的 [智谱 AI 开放平台](https://open.bigmodel.cn) API Key:
```diff
--- a/src/tools/config.py
+++ b/src/tools/config.py
@@ -2,5 +2,5 @@ BROWSER_SERVER_URL = 'http://localhost:3000'
IPYKERNEL = 'glm-4-demo'
-ZHIPU_AI_KEY = ''
+ZHIPU_AI_KEY = '<PUT_YOUR_ZHIPU_AI_KEY_HERE>'
COGVIEW_MODEL = 'cogview-3'
```
3. 启动浏览器后端,在单独的 shell 中:
```bash
cd browser
pnpm start
```
4. 运行以下命令在本地加载模型并启动 demo:
```bash
streamlit run src/main.py
```
之后即可从命令行中看到 demo 的地址,点击即可访问。初次访问需要下载并加载模型,可能需要花费一定时间。
如果已经在本地下载了模型,可以通过 `export *_MODEL_PATH=/path/to/model` 来指定从本地加载模型。可以指定的模型包括:
- `CHAT_MODEL_PATH`: 用于 All Tools 模式与文档解读模式,默认为 `THUDM/glm-4-9b-chat`
- `VLM_MODEL_PATH`: 用于 VLM 模式,默认为 `THUDM/glm-4v-9b`
Chat 模型支持使用 [vLLM](https://github.com/vllm-project/vllm) 推理。若要使用,请安装 vLLM 并设置环境变量 `USE_VLLM=1`
如果需要自定义 Jupyter 内核,可以通过 `export IPYKERNEL=<kernel_name>` 来指定。
## 使用
GLM-4 Demo 拥有三种模式:
- All Tools: 具有完整工具调用能力的对话模式,原生支持网页浏览、代码执行、图片生成,并支持自定义工具。
- 文档解读: 支持上传文档进行文档解读与对话。
- 多模态: 支持上传图像进行图像理解与对话。
### All Tools
本模式兼容 ChatGLM3-6B 的工具注册流程。
+ 代码能力,绘图能力,联网能力已经自动集成,用户只需按照要求配置对应的Key。
+ 本模式下不支持系统提示词,模型会自动构建提示词。
对话模式下,用户可以直接在侧边栏修改 top_p, temperature 等参数来调整模型的行为。
与模型对话时,模型将会自主决定进行工具调用。
![Tool calling](assets/tool.png)
由于原始结果可能较长,默认情况下工具调用结果被隐藏,可以通过展开折叠框查看原始的工具调用结果。
模型拥有进行网页搜索和 Python 代码执行的能力。同时,模型也可以连续调用多个工具。例如:
![Consecutive tool calling, 1](assets/web_plot_1.png)
此时模型通过调用浏览器工具进行搜索获取到了需要的数据,之后将会调用 Python 工具执行代码,利用 Matplotlib 绘图:
![Consecutive tool calling, 2](assets/web_plot_2.png)
如果提供了智谱开放平台 API Key,模型也可以调用 CogView 进行图像生成:
![Image generation](assets/cogview.png)
#### 自定义工具
可以通过在 `tool_registry.py` 中注册新的工具来增强模型的能力。只需要使用 `@register_tool`
装饰函数即可完成注册。对于工具声明,函数名称即为工具的名称,函数 docstring
即为工具的说明;对于工具的参数,使用 `Annotated[typ: type, description: str, required: bool]` 标注参数的类型、描述和是否必须。
例如,`get_weather` 工具的注册如下:
```python
@register_tool
def get_weather(
city_name: Annotated[str, 'The name of the city to be queried', True],
) -> str:
"""
Get the weather for `city_name` in the following week
"""
...
```
![The model uses tool to query the weather of Bangkok.](assets/weather.png)
### 文档解读
用户可以上传文档,使用 GLM-4-9B的长文本能力,对文本进行理解。可以解析 pptx,docx,pdf等文件。
+ 本模式下不支持工具调用和系统提示词。
+ 如果文本很长,可能导致模型需要的显存较高,请确认你的硬件配置。
![Doc reader demo](assets/doc_reader.png)
### 多模态
多模态模式下,用户可以利用 GLM-4V 的多模态理解能力,上传图像并与 GLM-4V 进行多轮对话:
用户可以上传图片,使用 GLM-4-9B的图像理解能力,对图片进行理解。
+ 本模式必须使用 glm-4v-9b 模型。
+ 本模式下不支持工具调用和系统提示词。
+ 模型仅能对一张图片进行理解和联系对话,如需更换图片,需要开启一个新的对话。
+ 图像支持的分辨率为 1120 x 1120
![VLM demo](assets/vlm.png)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment