trans_cli_vision_demo.py 3.7 KB
Newer Older
Rayyyyy's avatar
Rayyyyy committed
1
2
3
4
5
6
7
8
9
10
11
12
13
"""
This script creates a CLI demo with transformers backend for the glm-4v-9b model,
allowing users to interact with the model through a command-line interface.

Usage:
- Run the script to start the CLI demo.
- Interact with the model by typing questions and receiving responses.

Note: The script includes a modification to handle markdown to plain text conversion,
ensuring that the CLI interface displays formatted text correctly.
"""

import os
Rayyyyy's avatar
Rayyyyy committed
14
15
import argparse

Rayyyyy's avatar
Rayyyyy committed
16
17
18
19
20
21
22
23
24
25
26
import torch
from threading import Thread
from transformers import (
    AutoTokenizer,
    StoppingCriteria,
    StoppingCriteriaList,
    TextIteratorStreamer, AutoModel
)

from PIL import Image

Rayyyyy's avatar
Rayyyyy committed
27
28
29
30
31
32
33
# add model path
parser = argparse.ArgumentParser()
parser.add_argument('--model_name_or_path', default='THUDM/glm-4v-9b')
args = parser.parse_args()

# MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/glm-4v-9b')
MODEL_PATH = args.model_name_or_path
Rayyyyy's avatar
Rayyyyy committed
34
35
36
37
38
39

tokenizer = AutoTokenizer.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    encode_special_tokens=True
)
Rayyyyy's avatar
Rayyyyy committed
40

Rayyyyy's avatar
Rayyyyy committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
model = AutoModel.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    device_map="auto",
    torch_dtype=torch.bfloat16).eval()


class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = model.config.eos_token_id
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:
                return True
        return False


if __name__ == "__main__":
    history = []
    max_length = 1024
    top_p = 0.8
    temperature = 0.6
    stop = StopOnTokens()
    uploaded = False
    image = None
    print("Welcome to the GLM-4-9B CLI chat. Type your messages below.")
    image_path = input("Image Path:")
    try:
        image = Image.open(image_path).convert("RGB")
    except:
        print("Invalid image path. Continuing with text conversation.")
    while True:
        user_input = input("\nYou: ")
        if user_input.lower() in ["exit", "quit"]:
            break
        history.append([user_input, ""])

        messages = []
        for idx, (user_msg, model_msg) in enumerate(history):
            if idx == len(history) - 1 and not model_msg:
                messages.append({"role": "user", "content": user_msg})
                if image and not uploaded:
                    messages[-1].update({"image": image})
                    uploaded = True
                break
            if user_msg:
                messages.append({"role": "user", "content": user_msg})
            if model_msg:
                messages.append({"role": "assistant", "content": model_msg})
        model_inputs = tokenizer.apply_chat_template(
            messages,
            add_generation_prompt=True,
            tokenize=True,
            return_tensors="pt",
            return_dict=True
        ).to(model.device)
        streamer = TextIteratorStreamer(
            tokenizer=tokenizer,
            timeout=60,
            skip_prompt=True,
            skip_special_tokens=True
        )
        generate_kwargs = {
            **model_inputs,
            "streamer": streamer,
            "max_new_tokens": max_length,
            "do_sample": True,
            "top_p": top_p,
            "temperature": temperature,
            "stopping_criteria": StoppingCriteriaList([stop]),
            "repetition_penalty": 1.2,
            "eos_token_id": [151329, 151336, 151338],
        }
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()
        print("GLM-4:", end="", flush=True)
        for new_token in streamer:
            if new_token:
                print(new_token, end="", flush=True)
                history[-1][1] += new_token

        history[-1][1] = history[-1][1].strip()