trans_infer_transformers.py 1.41 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
from transformers import AutoProcessor, Glm4vForConditionalGeneration
import torch
import argparse


parser = argparse.ArgumentParser()
parser.add_argument("--model_path", type=str, default="THUDM/GLM-4.1V-9B-Thinking", help="Path to the model")
args = parser.parse_args()


if __name__ == "__main__":
    # Example usage
    messages = [
        {
            "role": "user",
            "content": [
                {
                    "type": "image",
chenych's avatar
chenych committed
19
                    "url": "../doc/Grayscale_8bits_palette_sample_image.png"
chenych's avatar
chenych committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
                },
                {
                    "type": "text",
                    "text": "describe this image"
                }
            ],
        }
    ]
    # Load model and processor
    processor = AutoProcessor.from_pretrained(args.model_path, use_fast=True)
    model = Glm4vForConditionalGeneration.from_pretrained(
        pretrained_model_name_or_path=args.model_path,
        torch_dtype=torch.bfloat16,
        device_map="auto",
    )
    # process inputs
    inputs = processor.apply_chat_template(
        messages,
        tokenize=True,
        add_generation_prompt=True,
        return_dict=True,
        return_tensors="pt"
    ).to(model.device)
    # generate
    generated_ids = model.generate(**inputs, max_new_tokens=8192)

    output_text = processor.decode(generated_ids[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
    print("output:\n", output_text)