trans_infer_cli.py 3.69 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""
A command-line interface for chatting with GLM-4.1V-9B-Thinkng model supporting images and videos.

Examples:
    # Text-only chat
    python trans_infer_cli.py
    # Chat with single image
    python trans_infer_cli.py --image_paths /path/to/image.jpg
    # Chat with multiple images
    python trans_infer_cli.py --image_paths /path/to/img1.jpg /path/to/img2.png /path/to/img3.png
    # Chat with single video
    python trans_infer_cli.py --video_path /path/to/video.mp4
    # Custom generation parameters
    python trans_infer_cli.py --temperature 0.8 --top_k 5 --max_tokens 4096

Notes:
    - Media files are loaded once at startup and persist throughout the conversation
    - Type 'exit' to quit the chat
    - Chat with images and video is NOT allowed
    - The model will remember the conversation history and can reference uploaded media in subsequent turns
"""

import argparse
import re

import torch
from transformers import AutoProcessor, Glm4vForConditionalGeneration

def build_content(image_paths, video_path, text):
    content = []
    if image_paths:
        for img_path in image_paths:
            content.append({"type": "image", "url": img_path})
    if video_path:
        content.append({"type": "video", "url": video_path})
    content.append({"type": "text", "text": text})
    return content


def main():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_path", type=str, default="THUDM/GLM-4.1V-9B-Thinking")
    parser.add_argument("--image_paths", type=str, nargs="*", default=None)
    parser.add_argument("--video_path", type=str, default=None)
    parser.add_argument("--max_tokens", type=int, default=8192)
    parser.add_argument("--temperature", type=float, default=1.0)
    parser.add_argument("--repetition_penalty", type=float, default=1.0)
    parser.add_argument("--top_k", type=int, default=2)

    args = parser.parse_args()
    processor = AutoProcessor.from_pretrained(args.model_path, use_fast=True)
    model = Glm4vForConditionalGeneration.from_pretrained(
        args.model_path, torch_dtype=torch.bfloat16, device_map="cuda:0"
    )
    messages = []
    first_turn = True
    if args.image_paths is not None and args.video_path is not None:
        raise ValueError(
            "Chat with images and video is NOT allowed. Please use either --image_paths or --video_path, not both."
        )

    while True:
        question = input("\nUser: ").strip()
        if question.lower() == "exit":
            break
        if first_turn:
            content = build_content(args.image_paths, args.video_path, question)
            first_turn = False
        else:
            content = [{"type": "text", "text": question}]
        messages.append({"role": "user", "content": content})
        inputs = processor.apply_chat_template(
            messages,
            tokenize=True,
            add_generation_prompt=True,
            return_dict=True,
            return_tensors="pt",
            padding=True,
        ).to(model.device)
        output = model.generate(
            **inputs,
            max_new_tokens=args.max_tokens,
            repetition_penalty=args.repetition_penalty,
            do_sample=args.temperature > 0,
            top_k=args.top_k,
            temperature=args.temperature if args.temperature > 0 else None,
        )
        raw = processor.decode(
            output[0][inputs["input_ids"].shape[1] : -1], skip_special_tokens=False
        )
        match = re.search(r"<answer>(.*?)</answer>", raw, re.DOTALL)
        answer = match.group(1).strip() if match else ""
        messages.append(
            {"role": "assistant", "content": [{"type": "text", "text": answer}]}
        )
        print(f"Assistant: {raw}")


if __name__ == "__main__":
    main()