"vscode:/vscode.git/clone" did not exist on "f4408219e92a7b22107a68d0b3f5eb545c06aed9"
run.py 2.69 KB
Newer Older
chenzk's avatar
v1.0  
chenzk committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright 2024 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import contextlib
import random

import numpy as np
import torch

from gemma import config
from gemma import model as gemma_model
import time


@contextlib.contextmanager
def _set_default_tensor_type(dtype: torch.dtype):
    """Sets the default torch dtype to the given dtype."""
    torch.set_default_dtype(dtype)
    yield
    torch.set_default_dtype(torch.float)


def main(args):
    # Construct the model config.
    model_config = config.get_model_config(args.variant)
    model_config.dtype = "float32" if args.device == "cpu" else "float16"
    model_config.quant = args.quant

    # Seed random.
    random.seed(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # Create the model and load the weights.
    device = torch.device(args.device)
    with _set_default_tensor_type(model_config.get_dtype()):
        model = gemma_model.GemmaForCausalLM(model_config)
        model.load_weights(args.ckpt)
        model = model.to(device).eval()
    print("Model loading done")

    # Generate the response.
    # start_time = time.time()
    result = model.generate(args.prompt, device, output_len=args.output_len)
    # print("infer time:", time.time() - start_time, "s")

    # Print the prompts and results.
    print('======================================')
    print(f'PROMPT: {args.prompt}')
    print(f'RESULT: {result}')
    print('======================================')


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--ckpt", type=str, required=True)
    parser.add_argument("--variant",
                        type=str,
                        default="2b",
                        choices=["2b", "7b"])
    parser.add_argument("--device",
                        type=str,
                        default="cpu",
                        choices=["cpu", "cuda"])
    parser.add_argument("--output_len", type=int, default=100)
    parser.add_argument("--seed", type=int, default=12345)
    parser.add_argument("--quant", action='store_true')
    parser.add_argument("--prompt", type=str, default="The meaning of life is")
    args = parser.parse_args()

    main(args)