README.md 5.26 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# Efficientnet_b2

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

- https://arxiv.org/abs/1905.11946

sunxx1's avatar
sunxx1 committed
9
## 模型结构
sunxx1's avatar
sunxx1 committed
10
11
12

EfficientNet B2是一种卷积神经网络模型,由Google Brain团队于2019年提出。它是EfficientNet系列的一部分,是在ImageNet数据集上进行训练的,具有高度优化的网络结构,可以有效地识别和分类图像。

sunxx1's avatar
sunxx1 committed
13
14
![20231124102153](./images/20231124102153.png)

sunxx1's avatar
sunxx1 committed
15
## 算法原理
sunxx1's avatar
sunxx1 committed
16
17
18

EfficientNet B2模型的网络结构可以分为三个部分:特征提取器、特征增强层和分类器。

sunxx1's avatar
sunxx1 committed
19
![20210419135003777](./images/20210419135003777.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
24

renzhc's avatar
renzhc committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
推荐使用docker方式运行,拉取提供的docker镜像

```shell
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.1.0-ubuntu20.04-dtk24.04.1-py3.10
```

基于拉取的镜像创建容器

```shell
# <your IMAGE ID or NAME>用以上拉取的docker的镜像ID或名称替换
docker run -it --name=efficientnet_b2_mmcv --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
```

克隆并安装git仓库,安装相关依赖

sunxx1's avatar
sunxx1 committed
40
41
```python
git clone --recursive http://developer.hpccube.com/codes/modelzoo/efficientnet_b2_mmcv.git
renzhc's avatar
renzhc committed
42
43
cd efficientnet_b2_mmcv/mmpretrain-mmcv
pip install -e .
sunxx1's avatar
sunxx1 committed
44
45
46
47
48
pip install -r requirements.txt
```

### Dockerfile(方法二)

renzhc's avatar
renzhc committed
49
```bash
sunxx1's avatar
sunxx1 committed
50
51
cd efficientnet_b2_mmcv/docker
docker build --no-cache -t efficientnet_b2_mmcv:latest .
renzhc's avatar
renzhc committed
52
53
54
55
docker run -it --name=efficientnet_b2_mmcv --network=host --ipc=host --shm-size=16g  --device=/dev/kfd --device=/dev/dri --device=/dev/mkfd --group-add video --privileged --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v /opt/hyhal:/opt/hyhal:ro <your IMAGE ID> bash
pip install -e .
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:
# pip install -r requirements.txt
sunxx1's avatar
sunxx1 committed
56
57
58
59
60
61
62
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

```plaintext
renzhc's avatar
renzhc committed
63
64
65
66
67
DTK驱动: DTK-24.04.1
python==3.10
torch==2.1.0
torchvision==0.16.0+das1.1.git7d45932.abi1.dtk2404.torch2.1
mmcv==2.0.1+das1.1.gite58da25.abi1.dtk2404.torch2.1.0
sunxx1's avatar
sunxx1 committed
68
69
70
71
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
sunxx1's avatar
sunxx1 committed
72

sunxx1's avatar
sunxx1 committed
73
```plaintext
sunxx1's avatar
sunxx1 committed
74
75
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
76

sunxx1's avatar
sunxx1 committed
77
## 数据集
sunxx1's avatar
sunxx1 committed
78

renzhc's avatar
renzhc committed
79
### ImageNet
sunxx1's avatar
sunxx1 committed
80

renzhc's avatar
renzhc committed
81
在本项目中可以使用ImageNet数据集。ImageNet数据集官方下载地址:https://image-net.org。
sunxx1's avatar
sunxx1 committed
82

renzhc's avatar
renzhc committed
83
也可于SCNet快速下载[imagenet-2012](http://113.200.138.88:18080/aidatasets/project-dependency/imagenet-2012),下载其中的ILSVRC2012_img_train.tar和ILSVRC2012_img_val.tar,并按照以下方式解包
bailuo's avatar
bailuo committed
84

renzhc's avatar
renzhc committed
85
86
87
88
89
```bash
cd mmpretrain-mmcv/data/imagenet
mkdir train && cd train
tar -xvf ILSVRC2012_img_train.tar
```
bailuo's avatar
bailuo committed
90

renzhc's avatar
renzhc committed
91
92
93
94
95
96
97
98
99
100
解包后是1000个tar文件,每个tar对应了一个类别,分别解包至对应文件夹,可利用如下shell脚本。

```bash
for tarfile in *.tar; do
    dirname="${tarfile%.tar}"
    mkdir "$dirname"
    tar -xvf "$tarfile" -C "$dirname"
done
```

renzhc's avatar
renzhc committed
101
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于imagenet,目录结构如下
sunxx1's avatar
sunxx1 committed
102

sunxx1's avatar
sunxx1 committed
103
```
dcuai's avatar
dcuai committed
104
data
renzhc's avatar
renzhc committed
105
106
107
108
109
110
111
112
└── imagenet
    ├── train
    │   ├── n01440764
    │   │   ├── n01440764_10026.JPEG
    │   │   ├── n01440764_10027.JPEG
    ├──val
    │   ├── n01440764 
    │   │   ├── ILSVRC2012_val_00000293.JPEG
sunxx1's avatar
sunxx1 committed
113
```
sunxx1's avatar
sunxx1 committed
114

renzhc's avatar
renzhc committed
115
116
### Tiny-ImageNet-200

renzhc's avatar
renzhc committed
117
由于ImageNet完整数据集较大,可以使用[tiny-imagenet-200](http://cs231n.stanford.edu/tiny-imagenet-200.zip)进行测试,可于SCNet快速下载[tiny-imagenet-200-scnet](http://113.200.138.88:18080/aidatasets/project-dependency/tiny-imagenet-200) ,此时需要对配置脚本进行一些修改,可参照mmpretrain-mmcv子仓库中进行配置,其中提供了使用tiny-imagenet-200进行训练的若干示例配置。
sunxx1's avatar
sunxx1 committed
118

renzhc's avatar
renzhc committed
119
120
121
122
123
124
125
126
127
128
129
将训练数据集解压后放置于mmpretrain-mmcv/data/,对于tiny-imagenet,目录结构如下:

```
data
└── imagenet
    ├── test/
    ├── train/
    ├── val/
    ├── wnids.txt
    └── words.txt
```
sunxx1's avatar
sunxx1 committed
130

renzhc's avatar
renzhc committed
131
## 训练
sunxx1's avatar
sunxx1 committed
132

renzhc's avatar
renzhc committed
133
- tiny-imagenet-200
sunxx1's avatar
sunxx1 committed
134

renzhc's avatar
renzhc committed
135
136
137
138
139
140
141
142
143
```shell
bash tools/dist_train.sh efficientnet-b2-test.py  8
```

- imagenet

```shell
bash tools/dist_train.sh configs/efficientnet/efficientnet-b2_8xb32_in1k.py 8
```
dcuai's avatar
dcuai committed
144

renzhc's avatar
renzhc committed
145
146
147
148
149
tips:如需其他卡数训练,将命令中的8改为所需卡数即可;如遇端口占用问题,可在tools/dist_train.sh修改端口。

## Result

![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)
dcuai's avatar
dcuai committed
150

renzhc's avatar
renzhc committed
151
### 精度
sunxx1's avatar
sunxx1 committed
152

renzhc's avatar
renzhc committed
153
测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。
sunxx1's avatar
sunxx1 committed
154

renzhc's avatar
renzhc committed
155
156
157
| 卡数  | 精度                        |
|:---:|:-------------------------:|
| 8   | top1:0.73228;top5:0.91522 |
sunxx1's avatar
sunxx1 committed
158

sunxx1's avatar
sunxx1 committed
159
160
161
162
163
164
165
166
## 应用场景

### 算法类别

图像分类

### 热点行业

renzhc's avatar
renzhc committed
167
制造,能源,交通,网安,安防
sunxx1's avatar
sunxx1 committed
168

dcuai's avatar
dcuai committed
169
## 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
170

sunxx1's avatar
sunxx1 committed
171
https://developer.hpccube.com/codes/modelzoo/efficientnet_b2_mmcv
sunxx1's avatar
sunxx1 committed
172

dcuai's avatar
dcuai committed
173
## 参考资料
sunxx1's avatar
sunxx1 committed
174

dcuai's avatar
dcuai committed
175
https://github.com/open-mmlab/mmpretrain