README.md 3.41 KB
Newer Older
sunxx1's avatar
sunxx1 committed
1
2
# Efficientnet_b2

sunxx1's avatar
sunxx1 committed
3
4
5
6
7
8
## 论文

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

- https://arxiv.org/abs/1905.11946

sunxx1's avatar
sunxx1 committed
9
## 模型结构
sunxx1's avatar
sunxx1 committed
10
11
12

EfficientNet B2是一种卷积神经网络模型,由Google Brain团队于2019年提出。它是EfficientNet系列的一部分,是在ImageNet数据集上进行训练的,具有高度优化的网络结构,可以有效地识别和分类图像。

sunxx1's avatar
sunxx1 committed
13
14
![20231124102153](./images/20231124102153.png)

sunxx1's avatar
sunxx1 committed
15
## 算法原理
sunxx1's avatar
sunxx1 committed
16
17
18

EfficientNet B2模型的网络结构可以分为三个部分:特征提取器、特征增强层和分类器。

sunxx1's avatar
sunxx1 committed
19
![20210419135003777](./images/20210419135003777.png)
sunxx1's avatar
sunxx1 committed
20

sunxx1's avatar
sunxx1 committed
21
## 环境配置
sunxx1's avatar
sunxx1 committed
22

sunxx1's avatar
sunxx1 committed
23
### Docker(方法一)
sunxx1's avatar
sunxx1 committed
24

sunxx1's avatar
sunxx1 committed
25
26
27
28
```python
git clone --recursive http://developer.hpccube.com/codes/modelzoo/efficientnet_b2_mmcv.git
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
dcuai's avatar
dcuai committed
29
docker run --shm-size 10g --network=host --name=efficientnet_b2 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/efficientnet_b2_mmcv:/home/efficientnet_b2_mmcv -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
30
31
32
33
34
35
36
37
38
39

cd efficientnet_b2_mmcv/mmclassification-mmcv
pip install -r requirements.txt
```

### Dockerfile(方法二)

```plaintext
cd efficientnet_b2_mmcv/docker
docker build --no-cache -t efficientnet_b2_mmcv:latest .
dcuai's avatar
dcuai committed
40
docker run --rm --shm-size 10g --network=host --name=efficientnet_b2 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../efficientnet_b2_mmcv:/home/efficientnet_b2_mmcv -it <your IMAGE ID> bash
sunxx1's avatar
sunxx1 committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt
```

### Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

```plaintext
DTK驱动:dtk22.10.1
python:python3.7
torch:1.10.0
torchvision:0.10.0
mmcv:1.6.1
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应
```

2、其它非特殊库参照requirements.txt安装
sunxx1's avatar
sunxx1 committed
58

sunxx1's avatar
sunxx1 committed
59
```plaintext
sunxx1's avatar
sunxx1 committed
60
61
pip install -r requirements.txt
```
sunxx1's avatar
sunxx1 committed
62

sunxx1's avatar
sunxx1 committed
63
## 数据集
sunxx1's avatar
sunxx1 committed
64

sunxx1's avatar
sunxx1 committed
65
在本测试中可以使用ImageNet数据集。
sunxx1's avatar
sunxx1 committed
66

sunxx1's avatar
sunxx1 committed
67
68
69
70
下载ImageNet数据集:https://image-net.org/

下载val数据:链接:https://pan.baidu.com/s/1oXsmsYahGVG3uOZ8e535LA?pwd=c3bc 提取码:c3bc 替换ImageNet数据集中的val目录,处理后的数据结构如下:

sunxx1's avatar
sunxx1 committed
71
```
dcuai's avatar
dcuai committed
72
73
74
75
76
77
78
79
80
data
    ├──imagenet
        ├── meta
            ├──val.txt
            ├──train.txt
            ...
        ├── train
        ├── val
  
sunxx1's avatar
sunxx1 committed
81
```
sunxx1's avatar
sunxx1 committed
82

sunxx1's avatar
sunxx1 committed
83
## 训练
sunxx1's avatar
sunxx1 committed
84
85
86

将训练数据解压到data目录下。

sunxx1's avatar
sunxx1 committed
87
### 单机8卡
sunxx1's avatar
sunxx1 committed
88
89
90

    ./efficientnet.sh

dcuai's avatar
dcuai committed
91
92
93
94
95
## result

![img](https://developer.hpccube.com/codes/modelzoo/vit_pytorch/-/raw/master/image/README/1695381570003.png)

### 精度
sunxx1's avatar
sunxx1 committed
96
97
98

测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。

sunxx1's avatar
sunxx1 committed
99
100
101
102
| 卡数 |           精度            |
| :--: | :-----------------------: |
|  8   | top1:0.73228;top5:0.91522 |

sunxx1's avatar
sunxx1 committed
103
104
105
106
107
108
109
110
111
112
## 应用场景

### 算法类别

图像分类

### 热点行业

制造,能源,交通,网安

dcuai's avatar
dcuai committed
113
## 源码仓库及问题反馈
sunxx1's avatar
sunxx1 committed
114

sunxx1's avatar
sunxx1 committed
115
https://developer.hpccube.com/codes/modelzoo/efficientnet_b2_mmcv
sunxx1's avatar
sunxx1 committed
116

dcuai's avatar
dcuai committed
117
## 参考资料
sunxx1's avatar
sunxx1 committed
118

dcuai's avatar
dcuai committed
119
https://github.com/open-mmlab/mmpretrain