ui_utils.py 10.3 KB
Newer Older
bailuo's avatar
bailuo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import copy
import os
import cv2
import numpy as np
import gradio as gr
from copy import deepcopy
from einops import rearrange
from types import SimpleNamespace

import datetime
import PIL
from PIL import Image
from PIL.ImageOps import exif_transpose
import torch
import torch.nn.functional as F

from diffusers import DDIMScheduler, AutoencoderKL, DPMSolverMultistepScheduler
from drag_pipeline import DragPipeline

from torchvision.utils import save_image
from pytorch_lightning import seed_everything

from .drag_utils import drag_diffusion_update
from .lora_utils import train_lora
from .attn_utils import register_attention_editor_diffusers, MutualSelfAttentionControl
from .freeu_utils import register_free_upblock2d, register_free_crossattn_upblock2d


# -------------- general UI functionality --------------
def clear_all(length=480):
    return gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        [], None, None

def clear_all_gen(length=480):
    return gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        gr.Image.update(value=None, height=length, width=length), \
        [], None, None, None

def mask_image(image,
               mask,
               color=[255,0,0],
               alpha=0.5):
    """ Overlay mask on image for visualization purpose. 
    Args:
        image (H, W, 3) or (H, W): input image
        mask (H, W): mask to be overlaid
        color: the color of overlaid mask
        alpha: the transparency of the mask
    """
    out = deepcopy(image)
    img = deepcopy(image)
    img[mask == 1] = color
    out = cv2.addWeighted(img, alpha, out, 1-alpha, 0, out)
    return out

def store_img(img, length=512):
    image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
    height,width,_ = image.shape
    image = Image.fromarray(image)
    image = exif_transpose(image)
    image = image.resize((length,int(length*height/width)), PIL.Image.BILINEAR)
    mask  = cv2.resize(mask, (length,int(length*height/width)), interpolation=cv2.INTER_NEAREST)
    image = np.array(image)

    if mask.sum() > 0:
        mask = np.uint8(mask > 0)
        masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
    else:
        masked_img = image.copy()
    # when new image is uploaded, `selected_points` should be empty
    return image, [], masked_img, mask

# once user upload an image, the original image is stored in `original_image`
# the same image is displayed in `input_image` for point clicking purpose
def store_img_gen(img):
    image, mask = img["image"], np.float32(img["mask"][:, :, 0]) / 255.
    image = Image.fromarray(image)
    image = exif_transpose(image)
    image = np.array(image)
    if mask.sum() > 0:
        mask = np.uint8(mask > 0)
        masked_img = mask_image(image, 1 - mask, color=[0, 0, 0], alpha=0.3)
    else:
        masked_img = image.copy()
    # when new image is uploaded, `selected_points` should be empty
    return image, [], masked_img, mask

# user click the image to get points, and show the points on the image
def get_points(img,
               sel_pix,
               evt: gr.SelectData):
    # collect the selected point
    sel_pix.append(evt.index)
    # draw points
    points = []


    for idx, point in enumerate(sel_pix):
        if idx % 2 == 0:
            # draw a red circle at the handle point
            cv2.circle(img, tuple(point), 10, (255, 0, 0), -1)
        else:
            # draw a blue circle at the handle point
            cv2.circle(img, tuple(point), 10, (0, 0, 255), -1)
        points.append(tuple(point))
        # draw an arrow from handle point to target point
        if len(points) == 2:
            cv2.arrowedLine(img, points[0], points[1], (255, 255, 255), 4, tipLength=0.5)
            points = []
    return img if isinstance(img, np.ndarray) else np.array(img)

# clear all handle/target points
def undo_points(original_image,
                mask):
    if mask.sum() > 0:
        mask = np.uint8(mask > 0)
        masked_img = mask_image(original_image, 1 - mask, color=[0, 0, 0], alpha=0.3)
    else:
        masked_img = original_image.copy()
    return masked_img, []
# ------------------------------------------------------

# ----------- dragging user-input image utils -----------
def train_lora_interface(original_image,
                         prompt,
                         model_path,
                         vae_path,
                         lora_path,
                         lora_step,
                         lora_lr,
                         lora_batch_size,
                         lora_rank,
                         progress=gr.Progress()):
    train_lora(
        original_image,
        prompt,
        model_path,
        vae_path,
        lora_path,
        lora_step,
        lora_lr,
        lora_batch_size,
        lora_rank,
        progress)
    return "Training LoRA Done!"

def preprocess_image(image,
                     device):
    image = torch.from_numpy(image).float() / 127.5 - 1 # [-1, 1]
    image = rearrange(image, "h w c -> 1 c h w")
    image = image.to(device)
    return image

def run_drag(source_image,
             image_with_clicks,
             mask,
             prompt,
             points,
             inversion_strength,
             end_step,
             lam,
             latent_lr,
             n_pix_step,
             model_path,
             vae_path,
             lora_path,
             start_step,
             start_layer,
             save_dir="./results"
    ):
    # initialize model
    device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
    scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012,
                          beta_schedule="scaled_linear", clip_sample=False,
                          set_alpha_to_one=False, steps_offset=1)


    model = DragPipeline.from_pretrained(model_path, scheduler=scheduler).to(device)
    # call this function to override unet forward function,
    # so that intermediate features are returned after forward
    model.modify_unet_forward()

    # print(model)

    # set vae
    if vae_path != "default":
        model.vae = AutoencoderKL.from_pretrained(
            vae_path
        ).to(model.vae.device, model.vae.dtype)

    # initialize parameters
    seed = 42 # random seed used by a lot of people for unknown reason
    seed_everything(seed)

    args = SimpleNamespace()
    args.prompt = prompt


    args.points = points
    args.n_inference_step = 50
    args.n_actual_inference_step = round(inversion_strength * args.n_inference_step)
    args.guidance_scale = 1.0

    args.unet_feature_idx = [3]

    args.r_m = 1
    args.r_p = 3
    args.lam = lam
    args.end_step = end_step

    args.lr = latent_lr
    args.n_pix_step = n_pix_step

    full_h, full_w = source_image.shape[:2]
    args.sup_res_h = int(0.5*full_h)
    args.sup_res_w = int(0.5*full_w)

    print(args)

    source_image = preprocess_image(source_image, device)
    image_with_clicks = preprocess_image(image_with_clicks, device)

    # set lora
    if lora_path == "":
        print("applying default parameters")
        model.unet.set_default_attn_processor()
    else:
        print("applying lora: " + lora_path)
        model.unet.load_attn_procs(lora_path)

    # invert the source image
    # the latent code resolution is too small, only 64*64
    invert_code = model.invert(source_image,
                               prompt,
                               guidance_scale=args.guidance_scale,
                               num_inference_steps=args.n_inference_step,
                               num_actual_inference_steps=args.n_actual_inference_step)

    mask = torch.from_numpy(mask).float() / 255.
    mask[mask > 0.0] = 1.0
    mask = rearrange(mask, "h w -> 1 1 h w").cuda()
    mask = F.interpolate(mask, (args.sup_res_h, args.sup_res_w), mode="nearest")

    handle_points = []
    target_points = []
    # here, the point is in x,y coordinate
    for idx, point in enumerate(points):
        cur_point = torch.tensor([point[1]/full_h*args.sup_res_h, point[0]/full_w*args.sup_res_w])
        cur_point = torch.round(cur_point)
        if idx % 2 == 0:
            handle_points.append(cur_point)
        else:
            target_points.append(cur_point)
    print('handle points:', handle_points)
    print('target points:', target_points)

    init_code = invert_code
    init_code_orig = deepcopy(init_code)
    model.scheduler.set_timesteps(args.n_inference_step)
    t = model.scheduler.timesteps[args.n_inference_step - args.n_actual_inference_step]

    # feature shape: [1280,16,16], [1280,32,32], [640,64,64], [320,64,64]
    # update according to the given supervision
    updated_init_code, h_feature, h_features = drag_diffusion_update(model, init_code, t,
        handle_points, target_points, mask, args)

    n_move = len(h_features)
    gen_img_list = []

    gen_image = model(
        prompt=args.prompt,
        h_feature=h_feature,
        end_step=args.end_step,
        batch_size=2,
        latents=torch.cat([init_code_orig, updated_init_code], dim=0),
        # latents=torch.cat([updated_init_code, updated_init_code], dim=0),
        guidance_scale=args.guidance_scale,
        num_inference_steps=args.n_inference_step,
        num_actual_inference_steps=args.n_actual_inference_step
    )[1].unsqueeze(dim=0)

    # resize gen_image into the size of source_image
    # we do this because shape of gen_image will be rounded to multipliers of 8
    gen_image = F.interpolate(gen_image, (full_h, full_w), mode='bilinear')

    copy_gen = copy.deepcopy(gen_image)
    gen_img_list.append(copy_gen)

    # save the original image, user editing instructions, synthesized image
    save_result = torch.cat([
        source_image * 0.5 + 0.5,
        torch.ones((1, 3, full_h, 25)).cuda(),
        image_with_clicks * 0.5 + 0.5,
        torch.ones((1, 3, full_h, 25)).cuda(),
        gen_image[0:1]
    ], dim=-1)

    if not os.path.isdir(save_dir):
        os.mkdir(save_dir)
    save_prefix = datetime.datetime.now().strftime("%Y-%m-%d-%H%M-%S")
    save_image(gen_image, os.path.join(save_dir, save_prefix + '.png'))


    #
    out_image = gen_image.cpu().permute(0, 2, 3, 1).numpy()[0]
    out_image = (out_image * 255).astype(np.uint8)
    return out_image