inference.py 8.88 KB
Newer Older
1
from typing import List, Tuple, Optional
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
2
3
4
5
6
7
8
9
10
11
12
import os
import math
from argparse import ArgumentParser, Namespace

import numpy as np
import torch
import einops
import pytorch_lightning as pl
from PIL import Image
from omegaconf import OmegaConf

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
13
from ldm.xformers_state import disable_xformers
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
14
15
from model.spaced_sampler import SpacedSampler
from model.cldm import ControlLDM
16
from model.cond_fn import MSEGuidance
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
from utils.image import (
    wavelet_reconstruction, adaptive_instance_normalization, auto_resize, pad
)
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts


@torch.no_grad()
def process(
    model: ControlLDM,
    control_imgs: List[np.ndarray],
    steps: int,
    strength: float,
    color_fix_type: str,
31
    disable_preprocess_model: bool,
32
33
34
35
    cond_fn: Optional[MSEGuidance],
    tiled: bool,
    tile_size: int,
    tile_stride: int
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
36
37
38
39
40
41
42
43
) -> Tuple[List[np.ndarray], List[np.ndarray]]:
    """
    Apply DiffBIR model on a list of low-quality images.
    
    Args:
        model (ControlLDM): Model.
        control_imgs (List[np.ndarray]): A list of low-quality images (HWC, RGB, range in [0, 255])
        steps (int): Sampling steps.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
44
        strength (float): Control strength. Set to 1.0 during training.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
45
46
47
48
49
50
51
52
53
54
        color_fix_type (str): Type of color correction for samples.
        disable_preprocess_model (bool): If specified, preprocess model (SwinIR) will not be used.
    
    Returns:
        preds (List[np.ndarray]): Restoration results (HWC, RGB, range in [0, 255]).
        stage1_preds (List[np.ndarray]): Outputs of preprocess model (HWC, RGB, range in [0, 255]). 
            If `disable_preprocess_model` is specified, then preprocess model's outputs is the same 
            as low-quality inputs.
    """
    n_samples = len(control_imgs)
55
    sampler = SpacedSampler(model, var_type="fixed_small")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
56
57
    control = torch.tensor(np.stack(control_imgs) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
    control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
58
    
59
60
61
    if disable_preprocess_model:
        model.preprocess_model = lambda x: x
    control = model.preprocess_model(control)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
62
63
    model.control_scales = [strength] * 13
    
64
    height, width = control.size(-2), control.size(-1)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
65
66
    shape = (n_samples, 4, height // 8, width // 8)
    x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
67
    if not tiled:
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
68
        samples = sampler.sample(
69
70
71
72
            steps=steps, shape=shape, cond_img=control,
            positive_prompt="", negative_prompt="", x_T=x_T,
            cfg_scale=1.0, cond_fn=cond_fn,
            color_fix_type=color_fix_type
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
73
74
        )
    else:
75
76
77
78
79
80
        samples = sampler.sample_with_mixdiff(
            tile_size=tile_size, tile_stride=tile_stride,
            steps=steps, shape=shape, cond_img=control,
            positive_prompt="", negative_prompt="", x_T=x_T,
            cfg_scale=1.0, cond_fn=cond_fn,
            color_fix_type=color_fix_type
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
81
        )
82
    x_samples = samples.clamp(0, 1)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
83
84
85
86
87
88
89
90
91
92
93
94
    x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
    control = (einops.rearrange(control, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
    
    preds = [x_samples[i] for i in range(n_samples)]
    stage1_preds = [control[i] for i in range(n_samples)]
    
    return preds, stage1_preds


def parse_args() -> Namespace:
    parser = ArgumentParser()
    
95
96
97
    # TODO: add help info for these options
    parser.add_argument("--ckpt", required=True, type=str, help="full checkpoint path")
    parser.add_argument("--config", required=True, type=str, help="model config path")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
98
99
100
101
102
103
104
105
106
107
    parser.add_argument("--reload_swinir", action="store_true")
    parser.add_argument("--swinir_ckpt", type=str, default="")
    
    parser.add_argument("--input", type=str, required=True)
    parser.add_argument("--steps", required=True, type=int)
    parser.add_argument("--sr_scale", type=float, default=1)
    parser.add_argument("--image_size", type=int, default=512)
    parser.add_argument("--repeat_times", type=int, default=1)
    parser.add_argument("--disable_preprocess_model", action="store_true")
    
108
109
110
111
112
    # patch-based sampling
    parser.add_argument("--tiled", action="store_true")
    parser.add_argument("--tile_size", type=int, default=512)
    parser.add_argument("--tile_stride", type=int, default=256)
    
113
114
115
116
117
118
119
120
    # latent image guidance
    parser.add_argument("--use_guidance", action="store_true")
    parser.add_argument("--g_scale", type=float, default=0.0)
    parser.add_argument("--g_t_start", type=int, default=1001)
    parser.add_argument("--g_t_stop", type=int, default=-1)
    parser.add_argument("--g_space", type=str, default="latent")
    parser.add_argument("--g_repeat", type=int, default=5)
    
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
121
122
123
124
125
126
127
    parser.add_argument("--color_fix_type", type=str, default="wavelet", choices=["wavelet", "adain", "none"])
    parser.add_argument("--resize_back", action="store_true")
    parser.add_argument("--output", type=str, required=True)
    parser.add_argument("--show_lq", action="store_true")
    parser.add_argument("--skip_if_exist", action="store_true")
    
    parser.add_argument("--seed", type=int, default=231)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
128
    parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda"])
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
129
130
131
132
133
134
135
    
    return parser.parse_args()


def main() -> None:
    args = parse_args()
    pl.seed_everything(args.seed)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
136
137
138
    
    if args.device == "cpu":
        disable_xformers()
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
139
140
141
142
143
144
145
146
147
148
    
    model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
    load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
    # reload preprocess model if specified
    if args.reload_swinir:
        if not hasattr(model, "preprocess_model"):
            raise ValueError(f"model don't have a preprocess model.")
        print(f"reload swinir model from {args.swinir_ckpt}")
        load_state_dict(model.preprocess_model, torch.load(args.swinir_ckpt, map_location="cpu"), strict=True)
    model.freeze()
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
149
    model.to(args.device)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
150
151
152
    
    assert os.path.isdir(args.input)
    
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
    for file_path in list_image_files(args.input, follow_links=True):
        lq = Image.open(file_path).convert("RGB")
        if args.sr_scale != 1:
            lq = lq.resize(
                tuple(math.ceil(x * args.sr_scale) for x in lq.size),
                Image.BICUBIC
            )
        lq_resized = auto_resize(lq, args.image_size)
        x = pad(np.array(lq_resized), scale=64)
        
        for i in range(args.repeat_times):
            save_path = os.path.join(args.output, os.path.relpath(file_path, args.input))
            parent_path, stem, _ = get_file_name_parts(save_path)
            save_path = os.path.join(parent_path, f"{stem}_{i}.png")
            if os.path.exists(save_path):
                if args.skip_if_exist:
                    print(f"skip {save_path}")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
170
                    continue
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
171
                else:
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
172
173
174
                    raise RuntimeError(f"{save_path} already exist")
            os.makedirs(parent_path, exist_ok=True)
            
175
176
177
178
179
180
181
182
183
            # initialize latent image guidance
            if args.use_guidance:
                cond_fn = MSEGuidance(
                    scale=args.g_scale, t_start=args.g_t_start, t_stop=args.g_t_stop,
                    space=args.g_space, repeat=args.g_repeat
                )
            else:
                cond_fn = None
            
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
184
            preds, stage1_preds = process(
185
                model, [x], steps=args.steps,
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
186
187
                strength=1,
                color_fix_type=args.color_fix_type,
188
                disable_preprocess_model=args.disable_preprocess_model,
189
190
                cond_fn=cond_fn,
                tiled=args.tiled, tile_size=args.tile_size, tile_stride=args.tile_stride
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
            )
            pred, stage1_pred = preds[0], stage1_preds[0]
            
            # remove padding
            pred = pred[:lq_resized.height, :lq_resized.width, :]
            stage1_pred = stage1_pred[:lq_resized.height, :lq_resized.width, :]
            
            if args.show_lq:
                if args.resize_back:
                    if lq_resized.size != lq.size:
                        pred = np.array(Image.fromarray(pred).resize(lq.size, Image.LANCZOS))
                        stage1_pred = np.array(Image.fromarray(stage1_pred).resize(lq.size, Image.LANCZOS))
                    lq = np.array(lq)
                else:
                    lq = np.array(lq_resized)
                images = [lq, pred] if args.disable_preprocess_model else [lq, stage1_pred, pred]
                Image.fromarray(np.concatenate(images, axis=1)).save(save_path)
            else:
                if args.resize_back and lq_resized.size != lq.size:
                    Image.fromarray(pred).resize(lq.size, Image.LANCZOS).save(save_path)
                else:
                    Image.fromarray(pred).save(save_path)
            print(f"save to {save_path}")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
214
215
216

if __name__ == "__main__":
    main()