inference.py 8.92 KB
Newer Older
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from typing import List, Tuple
import os
import math
from argparse import ArgumentParser, Namespace

import numpy as np
import torch
import einops
import pytorch_lightning as pl
from PIL import Image
from omegaconf import OmegaConf

from model.spaced_sampler import SpacedSampler
from model.ddim_sampler import DDIMSampler
from model.cldm import ControlLDM
from utils.image import (
    wavelet_reconstruction, adaptive_instance_normalization, auto_resize, pad
)
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts


@torch.no_grad()
def process(
    model: ControlLDM,
    control_imgs: List[np.ndarray],
    sampler: str,
    steps: int,
    strength: float,
    color_fix_type: str,
    disable_preprocess_model: bool
) -> Tuple[List[np.ndarray], List[np.ndarray]]:
    """
    Apply DiffBIR model on a list of low-quality images.
    
    Args:
        model (ControlLDM): Model.
        control_imgs (List[np.ndarray]): A list of low-quality images (HWC, RGB, range in [0, 255])
        sampler (str): Sampler name.
        steps (int): Sampling steps.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
41
        strength (float): Control strength. Set to 1.0 during training.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
        color_fix_type (str): Type of color correction for samples.
        disable_preprocess_model (bool): If specified, preprocess model (SwinIR) will not be used.
    
    Returns:
        preds (List[np.ndarray]): Restoration results (HWC, RGB, range in [0, 255]).
        stage1_preds (List[np.ndarray]): Outputs of preprocess model (HWC, RGB, range in [0, 255]). 
            If `disable_preprocess_model` is specified, then preprocess model's outputs is the same 
            as low-quality inputs.
    """
    n_samples = len(control_imgs)
    if sampler == "ddpm":
        sampler = SpacedSampler(model, var_type="fixed_small")
    else:
        sampler = DDIMSampler(model)
    control = torch.tensor(np.stack(control_imgs) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
    control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
    # TODO: model.preprocess_model = lambda x: x
    if not disable_preprocess_model and hasattr(model, "preprocess_model"):
        control = model.preprocess_model(control)
    elif disable_preprocess_model and not hasattr(model, "preprocess_model"):
        raise ValueError(f"model doesn't have a preprocess model.")
    
    height, width = control.size(-2), control.size(-1)
    cond = {
        "c_latent": [model.apply_condition_encoder(control)],
        "c_crossattn": [model.get_learned_conditioning([""] * n_samples)]
    }
    model.control_scales = [strength] * 13
    
    shape = (n_samples, 4, height // 8, width // 8)
    x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
    if isinstance(sampler, SpacedSampler):
        samples = sampler.sample(
            steps, shape, cond,
            unconditional_guidance_scale=1.0,
            unconditional_conditioning=None,
            cond_fn=None, x_T=x_T
        )
    else:
        sampler: DDIMSampler
        samples, _ = sampler.sample(
            S=steps, batch_size=shape[0], shape=shape[1:],
            conditioning=cond, unconditional_conditioning=None,
            x_T=x_T, eta=0
        )
    x_samples = model.decode_first_stage(samples)
    x_samples = ((x_samples + 1) / 2).clamp(0, 1)
    
    # apply color correction (borrowed from StableSR)
    if color_fix_type == "adain":
        x_samples = adaptive_instance_normalization(x_samples, control)
    elif color_fix_type == "wavelet":
        x_samples = wavelet_reconstruction(x_samples, control)
    else:
        assert color_fix_type == "none", f"unexpected color fix type: {color_fix_type}"
    
    x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
    control = (einops.rearrange(control, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
    
    preds = [x_samples[i] for i in range(n_samples)]
    stage1_preds = [control[i] for i in range(n_samples)]
    
    return preds, stage1_preds


def parse_args() -> Namespace:
    parser = ArgumentParser()
    
    parser.add_argument("--ckpt", required=True, type=str)
    parser.add_argument("--config", required=True, type=str)
    parser.add_argument("--reload_swinir", action="store_true")
    parser.add_argument("--swinir_ckpt", type=str, default="")
    
    parser.add_argument("--input", type=str, required=True)
    parser.add_argument("--sampler", type=str, default="ddpm", choices=["ddpm", "ddim"])
    parser.add_argument("--steps", required=True, type=int)
    parser.add_argument("--sr_scale", type=float, default=1)
    parser.add_argument("--image_size", type=int, default=512)
    parser.add_argument("--repeat_times", type=int, default=1)
    parser.add_argument("--disable_preprocess_model", action="store_true")
    
    parser.add_argument("--color_fix_type", type=str, default="wavelet", choices=["wavelet", "adain", "none"])
    parser.add_argument("--resize_back", action="store_true")
    parser.add_argument("--output", type=str, required=True)
    parser.add_argument("--show_lq", action="store_true")
    parser.add_argument("--skip_if_exist", action="store_true")
    
    parser.add_argument("--seed", type=int, default=231)
    
    return parser.parse_args()


def main() -> None:
    args = parse_args()
    pl.seed_everything(args.seed)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
    load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
    # reload preprocess model if specified
    if args.reload_swinir:
        if not hasattr(model, "preprocess_model"):
            raise ValueError(f"model don't have a preprocess model.")
        print(f"reload swinir model from {args.swinir_ckpt}")
        load_state_dict(model.preprocess_model, torch.load(args.swinir_ckpt, map_location="cpu"), strict=True)
    model.freeze()
    model.to(device)
    
    assert os.path.isdir(args.input)
    
ziyannchen's avatar
ziyannchen committed
152
    print(f"sampling {args.steps} steps using {args.sampler} sampler")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
153
154
155
156
157
158
159
    with torch.autocast(device):
        for file_path in list_image_files(args.input, follow_links=True):
            lq = Image.open(file_path).convert("RGB")
            if args.sr_scale != 1:
                lq = lq.resize(
                    tuple(math.ceil(x * args.sr_scale) for x in lq.size),
                    Image.BICUBIC
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
160
                )
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
161
162
            lq_resized = auto_resize(lq, args.image_size)
            x = pad(np.array(lq_resized), scale=64)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
163
            
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            for i in range(args.repeat_times):
                save_path = os.path.join(args.output, os.path.relpath(file_path, args.input))
                parent_path, stem, _ = get_file_name_parts(save_path)
                save_path = os.path.join(parent_path, f"{stem}_{i}.png")
                if os.path.exists(save_path):
                    if args.skip_if_exist:
                        print(f"skip {save_path}")
                        continue
                    else:
                        raise RuntimeError(f"{save_path} already exist")
                os.makedirs(parent_path, exist_ok=True)
                
                try:
                    preds, stage1_preds = process(
                        model, [x], steps=args.steps, sampler=args.sampler,
                        strength=1,
                        color_fix_type=args.color_fix_type,
                        disable_preprocess_model=args.disable_preprocess_model
                    )
                except RuntimeError as e:
                    # Avoid cuda_out_of_memory error.
                    print(f"{file_path}, error: {e}")
                    continue
                
                pred, stage1_pred = preds[0], stage1_preds[0]
                
                # remove padding
                pred = pred[:lq_resized.height, :lq_resized.width, :]
                stage1_pred = stage1_pred[:lq_resized.height, :lq_resized.width, :]
                
                if args.show_lq:
                    if args.resize_back:
                        if lq_resized.size != lq.size:
                            pred = np.array(Image.fromarray(pred).resize(lq.size, Image.LANCZOS))
                            stage1_pred = np.array(Image.fromarray(stage1_pred).resize(lq.size, Image.LANCZOS))
                        lq = np.array(lq)
                    else:
                        lq = np.array(lq_resized)
                    images = [lq, pred] if args.disable_preprocess_model else [lq, stage1_pred, pred]
                    Image.fromarray(np.concatenate(images, axis=1)).save(save_path)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
204
                else:
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
205
206
207
208
209
                    if args.resize_back and lq_resized.size != lq.size:
                        Image.fromarray(pred).resize(lq.size, Image.LANCZOS).save(save_path)
                    else:
                        Image.fromarray(pred).save(save_path)
                print(f"save to {save_path}")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
210
211
212

if __name__ == "__main__":
    main()