inference_face.py 8.38 KB
Newer Older
ziyannchen's avatar
ziyannchen committed
1
2
3
4
5
6
7
8
9
10
11
12
import os
import math
import torch
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import pytorch_lightning as pl
from typing import List, Tuple
from argparse import ArgumentParser, Namespace

from facexlib.utils.face_restoration_helper import FaceRestoreHelper

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
13
from ldm.xformers_state import disable_xformers
ziyannchen's avatar
ziyannchen committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from model.cldm import ControlLDM
from model.ddim_sampler import DDIMSampler
from model.spaced_sampler import SpacedSampler
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts
from utils.image import (
    wavelet_reconstruction, adaptive_instance_normalization, auto_resize, pad
)

from inference import process


def parse_args() -> Namespace:
    parser = ArgumentParser()
    # model
    parser.add_argument("--ckpt", required=True, type=str, help='Model checkpoint.')
    parser.add_argument("--config", required=True, type=str, help='Model config file.')
    parser.add_argument("--reload_swinir", action="store_true")
    parser.add_argument("--swinir_ckpt", type=str, default="")

    # input and preprocessing
    parser.add_argument("--input", type=str, required=True)
    parser.add_argument("--sampler", type=str, default="ddpm", choices=["ddpm", "ddim"])
    parser.add_argument("--steps", required=True, type=int)
    parser.add_argument("--sr_scale", type=float, default=1)
    parser.add_argument("--image_size", type=int, default=512)
    parser.add_argument("--repeat_times", type=int, default=1)
    parser.add_argument("--disable_preprocess_model", action="store_true")

    # face related
    parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
    parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
    parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', 
            help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
                Default: retinaface_resnet50')
    # TODO: support diffbir background upsampler
    # parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: diffbir, realesrgan')
    
    # postprocessing and saving
    parser.add_argument("--color_fix_type", type=str, default="wavelet", choices=["wavelet", "adain", "none"])
    parser.add_argument("--resize_back", action="store_true")
    parser.add_argument("--output", type=str, required=True)
    parser.add_argument("--show_lq", action="store_true")
    parser.add_argument("--skip_if_exist", action="store_true")
    
    parser.add_argument("--seed", type=int, default=231)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
60
    parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda"])
ziyannchen's avatar
ziyannchen committed
61
62
63
64
65
66
67
68
    
    return parser.parse_args()


def main() -> None:
    args = parse_args()
    img_save_ext = 'png'
    pl.seed_everything(args.seed)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
69
70
71
    
    if args.device == "cpu":
        disable_xformers()
ziyannchen's avatar
ziyannchen committed
72
73
74
75
76
77
78
79
80
81
    
    model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
    load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
    # reload preprocess model if specified
    if args.reload_swinir:
        if not hasattr(model, "preprocess_model"):
            raise ValueError(f"model don't have a preprocess model.")
        print(f"reload swinir model from {args.swinir_ckpt}")
        load_state_dict(model.preprocess_model, torch.load(args.swinir_ckpt, map_location="cpu"), strict=True)
    model.freeze()
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
82
    model.to(args.device)
ziyannchen's avatar
ziyannchen committed
83
84
85
86
87
    
    assert os.path.isdir(args.input)

    # ------------------ set up FaceRestoreHelper -------------------
    face_helper = FaceRestoreHelper(
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
88
        device=args.device, 
ziyannchen's avatar
ziyannchen committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
        upscale_factor=1, 
        face_size=args.image_size, 
        use_parse=True,
        det_model = args.detection_model
        )
    # TODO: to support backgrouns upsampler
    bg_upsampler = None
    
    print(f"sampling {args.steps} steps using {args.sampler} sampler")
    for file_path in list_image_files(args.input, follow_links=True):
        # read image
        lq = Image.open(file_path).convert("RGB")
        if args.sr_scale != 1:
            lq = lq.resize(
                tuple(math.ceil(x * args.sr_scale) for x in lq.size),
                Image.BICUBIC
            )
        lq_resized = auto_resize(lq, args.image_size)
        x = pad(np.array(lq_resized), scale=64)

        face_helper.clean_all()
        if args.has_aligned: 
            # the input faces are already cropped and aligned
            face_helper.cropped_faces = [x]
        else:
            face_helper.read_image(x)
            # get face landmarks for each face
            face_helper.get_face_landmarks_5(only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
            face_helper.align_warp_face()

        save_path = os.path.join(args.output, os.path.relpath(file_path, args.input))
        parent_path, basename, _ = get_file_name_parts(save_path)
        os.makedirs(parent_path, exist_ok=True)
        os.makedirs(os.path.join(parent_path, 'cropped_faces'), exist_ok=True)
        os.makedirs(os.path.join(parent_path, 'restored_faces'), exist_ok=True)
        os.makedirs(os.path.join(parent_path, 'restored_imgs'), exist_ok=True)
        for i in range(args.repeat_times):
            restored_img_path = os.path.join(parent_path, 'restored_imgs', f'{basename}.{img_save_ext}')
            if os.path.exists(restored_img_path):
                if args.skip_if_exist:
                    print(f"Exists, skip face image {basename}...")
                    continue
                else:
                    raise RuntimeError(f"Image {basename} already exist")
            
            try:
                preds, stage1_preds = process(
                    model, face_helper.cropped_faces, steps=args.steps, sampler=args.sampler,
                    strength=1,
                    color_fix_type=args.color_fix_type,
                    disable_preprocess_model=args.disable_preprocess_model
                )
            except RuntimeError as e:
                # Avoid cuda_out_of_memory error.
                print(f"{file_path}, error: {e}")
                continue
            
            for restored_face in preds:
                # unused stage1 preds
                # face_helper.add_restored_face(np.array(stage1_restored_face))
                face_helper.add_restored_face(np.array(restored_face))

            # paste face back to the image
            if not args.has_aligned:
                # upsample the background
                if bg_upsampler is not None:
                    # TODO
                    bg_img = None
                else:
                    bg_img = None
                face_helper.get_inverse_affine(None)

                # paste each restored face to the input image
                restored_img = face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img
                )

            # save faces
            for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
                save_path = os.path.join(parent_path, f"{basename}_{i}.{img_save_ext}")
                # save cropped face
                if not args.has_aligned: 
                    save_crop_path = os.path.join(parent_path, 'cropped_faces', f'{basename}_{idx:02d}.{img_save_ext}')
                    Image.fromarray(cropped_face).save(save_crop_path)
                # save restored face
                if args.has_aligned:
                    save_face_name = f'{basename}.{img_save_ext}'
                else:
                    save_face_name = f'{basename}_{idx:02d}.{img_save_ext}'
                save_restore_path = os.path.join(parent_path, 'restored_faces', save_face_name)
                Image.fromarray(restored_face).save(save_restore_path)

zycXD's avatar
zycXD committed
181
182
183
184
185
186
187
188
            if not args.has_aligned:
                # remove padding
                restored_img = restored_img[:lq_resized.height, :lq_resized.width, :]
                # save restored image
                if args.resize_back and lq_resized.size != lq.size:
                    Image.fromarray(restored_img).resize(lq.size, Image.LANCZOS).convert("RGB").save(restored_img_path)
                else:
                    Image.fromarray(restored_img).convert("RGB").save(restored_img_path)
ziyannchen's avatar
ziyannchen committed
189
190
191
192
            print(f"Face image {basename} saved to {parent_path}")


if __name__ == "__main__":
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
193
    main()