inference_face.py 8.24 KB
Newer Older
ziyannchen's avatar
ziyannchen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import os
import math
import torch
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
import pytorch_lightning as pl
from typing import List, Tuple
from argparse import ArgumentParser, Namespace

from facexlib.utils.face_restoration_helper import FaceRestoreHelper

from model.cldm import ControlLDM
from model.ddim_sampler import DDIMSampler
from model.spaced_sampler import SpacedSampler
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts
from utils.image import (
    wavelet_reconstruction, adaptive_instance_normalization, auto_resize, pad
)

from inference import process


def parse_args() -> Namespace:
    parser = ArgumentParser()
    # model
    parser.add_argument("--ckpt", required=True, type=str, help='Model checkpoint.')
    parser.add_argument("--config", required=True, type=str, help='Model config file.')
    parser.add_argument("--reload_swinir", action="store_true")
    parser.add_argument("--swinir_ckpt", type=str, default="")

    # input and preprocessing
    parser.add_argument("--input", type=str, required=True)
    parser.add_argument("--sampler", type=str, default="ddpm", choices=["ddpm", "ddim"])
    parser.add_argument("--steps", required=True, type=int)
    parser.add_argument("--sr_scale", type=float, default=1)
    parser.add_argument("--image_size", type=int, default=512)
    parser.add_argument("--repeat_times", type=int, default=1)
    parser.add_argument("--disable_preprocess_model", action="store_true")

    # face related
    parser.add_argument('--has_aligned', action='store_true', help='Input are cropped and aligned faces. Default: False')
    parser.add_argument('--only_center_face', action='store_true', help='Only restore the center face. Default: False')
    parser.add_argument('--detection_model', type=str, default='retinaface_resnet50', 
            help='Face detector. Optional: retinaface_resnet50, retinaface_mobile0.25, YOLOv5l, YOLOv5n, dlib. \
                Default: retinaface_resnet50')
    # TODO: support diffbir background upsampler
    # parser.add_argument('--bg_upsampler', type=str, default='None', help='Background upsampler. Optional: diffbir, realesrgan')
    
    # postprocessing and saving
    parser.add_argument("--color_fix_type", type=str, default="wavelet", choices=["wavelet", "adain", "none"])
    parser.add_argument("--resize_back", action="store_true")
    parser.add_argument("--output", type=str, required=True)
    parser.add_argument("--show_lq", action="store_true")
    parser.add_argument("--skip_if_exist", action="store_true")
    
    parser.add_argument("--seed", type=int, default=231)
    
    return parser.parse_args()


def main() -> None:
    args = parse_args()
    img_save_ext = 'png'
    pl.seed_everything(args.seed)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    
    model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
    load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
    # reload preprocess model if specified
    if args.reload_swinir:
        if not hasattr(model, "preprocess_model"):
            raise ValueError(f"model don't have a preprocess model.")
        print(f"reload swinir model from {args.swinir_ckpt}")
        load_state_dict(model.preprocess_model, torch.load(args.swinir_ckpt, map_location="cpu"), strict=True)
    model.freeze()
    model.to(device)
    
    assert os.path.isdir(args.input)

    # ------------------ set up FaceRestoreHelper -------------------
    face_helper = FaceRestoreHelper(
        device=device, 
        upscale_factor=1, 
        face_size=args.image_size, 
        use_parse=True,
        det_model = args.detection_model
        )
    # TODO: to support backgrouns upsampler
    bg_upsampler = None
    
    print(f"sampling {args.steps} steps using {args.sampler} sampler")
    for file_path in list_image_files(args.input, follow_links=True):
        # read image
        lq = Image.open(file_path).convert("RGB")
        if args.sr_scale != 1:
            lq = lq.resize(
                tuple(math.ceil(x * args.sr_scale) for x in lq.size),
                Image.BICUBIC
            )
        lq_resized = auto_resize(lq, args.image_size)
        x = pad(np.array(lq_resized), scale=64)

        face_helper.clean_all()
        if args.has_aligned: 
            # the input faces are already cropped and aligned
            face_helper.cropped_faces = [x]
        else:
            face_helper.read_image(x)
            # get face landmarks for each face
            face_helper.get_face_landmarks_5(only_center_face=args.only_center_face, resize=640, eye_dist_threshold=5)
            face_helper.align_warp_face()

        save_path = os.path.join(args.output, os.path.relpath(file_path, args.input))
        parent_path, basename, _ = get_file_name_parts(save_path)
        os.makedirs(parent_path, exist_ok=True)
        os.makedirs(os.path.join(parent_path, 'cropped_faces'), exist_ok=True)
        os.makedirs(os.path.join(parent_path, 'restored_faces'), exist_ok=True)
        os.makedirs(os.path.join(parent_path, 'restored_imgs'), exist_ok=True)
        for i in range(args.repeat_times):
            restored_img_path = os.path.join(parent_path, 'restored_imgs', f'{basename}.{img_save_ext}')
            if os.path.exists(restored_img_path):
                if args.skip_if_exist:
                    print(f"Exists, skip face image {basename}...")
                    continue
                else:
                    raise RuntimeError(f"Image {basename} already exist")
            
            try:
                preds, stage1_preds = process(
                    model, face_helper.cropped_faces, steps=args.steps, sampler=args.sampler,
                    strength=1,
                    color_fix_type=args.color_fix_type,
                    disable_preprocess_model=args.disable_preprocess_model
                )
            except RuntimeError as e:
                # Avoid cuda_out_of_memory error.
                print(f"{file_path}, error: {e}")
                continue
            
            for restored_face in preds:
                # unused stage1 preds
                # face_helper.add_restored_face(np.array(stage1_restored_face))
                face_helper.add_restored_face(np.array(restored_face))

            # paste face back to the image
            if not args.has_aligned:
                # upsample the background
                if bg_upsampler is not None:
                    # TODO
                    bg_img = None
                else:
                    bg_img = None
                face_helper.get_inverse_affine(None)

                # paste each restored face to the input image
                restored_img = face_helper.paste_faces_to_input_image(
                    upsample_img=bg_img
                )

            # save faces
            for idx, (cropped_face, restored_face) in enumerate(zip(face_helper.cropped_faces, face_helper.restored_faces)):
                save_path = os.path.join(parent_path, f"{basename}_{i}.{img_save_ext}")
                # save cropped face
                if not args.has_aligned: 
                    save_crop_path = os.path.join(parent_path, 'cropped_faces', f'{basename}_{idx:02d}.{img_save_ext}')
                    Image.fromarray(cropped_face).save(save_crop_path)
                # save restored face
                if args.has_aligned:
                    save_face_name = f'{basename}.{img_save_ext}'
                else:
                    save_face_name = f'{basename}_{idx:02d}.{img_save_ext}'
                save_restore_path = os.path.join(parent_path, 'restored_faces', save_face_name)
                Image.fromarray(restored_face).save(save_restore_path)

zycXD's avatar
zycXD committed
177
178
179
180
181
182
183
184
            if not args.has_aligned:
                # remove padding
                restored_img = restored_img[:lq_resized.height, :lq_resized.width, :]
                # save restored image
                if args.resize_back and lq_resized.size != lq.size:
                    Image.fromarray(restored_img).resize(lq.size, Image.LANCZOS).convert("RGB").save(restored_img_path)
                else:
                    Image.fromarray(restored_img).convert("RGB").save(restored_img_path)
ziyannchen's avatar
ziyannchen committed
185
186
187
188
189
            print(f"Face image {basename} saved to {parent_path}")


if __name__ == "__main__":
    main()