"examples/community/wildcard_stable_diffusion.py" did not exist on "8d14edf27ff28a5a37cdb19927579a2d590a7af2"
README.md 14.5 KB
Newer Older
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
1
2
3
4
5
6
<p align="center">
    <img src="assets/logo.png" width="400">
</p>

## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
7
[Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
8

9
![visitors](https://visitor-badge.laobi.icu/badge?page_id=XPixelGroup/DiffBIR) [![Open in OpenXLab](https://cdn-static.openxlab.org.cn/app-center/openxlab_app.svg)](https://openxlab.org.cn/apps/detail/linxinqi/DiffBIR-official) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
10
11
12

[Xinqi Lin](https://0x3f3f3f3fun.github.io/)<sup>1,\*</sup>, [Jingwen He](https://github.com/hejingwenhejingwen)<sup>2,\*</sup>, [Ziyan Chen](https://orcid.org/0000-0001-6277-5635)<sup>2</sup>, [Zhaoyang Lyu](https://scholar.google.com.tw/citations?user=gkXFhbwAAAAJ&hl=en)<sup>2</sup>, [Ben Fei](https://scholar.google.com/citations?user=skQROj8AAAAJ&hl=zh-CN&oi=ao)<sup>2</sup>, [Bo Dai](http://daibo.info/)<sup>2</sup>, [Wanli Ouyang](https://wlouyang.github.io/)<sup>2</sup>, [Yu Qiao](http://mmlab.siat.ac.cn/yuqiao)<sup>2</sup>, [Chao Dong](http://xpixel.group/2010/01/20/chaodong.html)<sup>1,2</sup>

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
13
<sup>1</sup>Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences<br><sup>2</sup>Shanghai AI Laboratory
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
14
15
16
17
18
19
20
21
22
23

<p align="center">
    <img src="assets/architecture.png" style="border-radius: 15px">
</p>

:star:If DiffBIR is helpful for you, please help star this repo. Thanks!:hugs:

## :book:Table Of Contents

- [Visual Results On Real-world Images](#visual_results)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
24
25
- [Update](#update)
- [TODO](#todo)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
- [Installation](#installation)
- [Pretrained Models](#pretrained_models)
- [Quick Start (gradio demo)](#quick_start)
- [Inference](#inference)
- [Train](#train)

## <a name="visual_results"></a>:eyes:Visual Results On Real-world Images

<!-- <details close>
<summary>General Image Restoration</summary> -->
### General Image Restoration

[<img src="assets/visual_results/general6.png" height="223px"/>](https://imgsli.com/MTk5ODI3) [<img src="assets/visual_results/general7.png" height="223px"/>](https://imgsli.com/MTk5ODI4) [<img src="assets/visual_results/general4.png" height="223px"/>](https://imgsli.com/MTk5ODI1)

[<img src="assets/visual_results/general1.png" height="223px"/>](https://imgsli.com/MTk5ODIy) [<img src="assets/visual_results/general2.png" height="223px"/>](https://imgsli.com/MTk5ODIz)

[<img src="assets/visual_results/general3.png" height="223px"/>](https://imgsli.com/MTk5ODI0) [<img src="assets/visual_results/general5.png" height="223px"/>](https://imgsli.com/MjAxMjM0)

<!-- </details> -->

<!-- <details close> -->
<!-- <summary>Face Image Restoration</summary> -->
### Face Image Restoration

[<img src="assets/visual_results/face1.png" height="223px"/>](https://imgsli.com/MTk5ODI5) [<img src="assets/visual_results/face2.png" height="223px"/>](https://imgsli.com/MTk5ODMw) [<img src="assets/visual_results/face3.png" height="223px"/>](https://imgsli.com/MTk5ODMy)

[<img src="assets/visual_results/face4.png" height="223px"/>](https://imgsli.com/MTk5ODM0) [<img src="assets/visual_results/face5.png" height="223px"/>](https://imgsli.com/MTk5ODM1) [<img src="assets/visual_results/face6.png" height="223px"/>](https://imgsli.com/MTk5ODM2)

54
55
[<img src="assets/visual_results/whole_image1.png" height="410px"/>](https://imgsli.com/MjA0MzQw)

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
56
57
<!-- </details> -->

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
58
59
60
61
62
63
## <a name="update"></a>:new:Update

- **2023.08.30**: Repo is released.
- **2023.09.06**: Update [colab demo](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb). Thanks to [camenduru](https://github.com/camenduru)!:hugs:
- **2023.09.08**: Add support for restoring unaligned faces.
- **2023.09.12**: Upload inference code of latent image guidance and release [real47](inputs/real47) testset.
64
- **2023.09.13**: Provide online demo (DiffBIR-official) in [OpenXLab](https://openxlab.org.cn/apps/detail/linxinqi/DiffBIR-official), which integrates both general model and face model. Please have a try! [camenduru](https://github.com/camenduru) also implements an online demo, thanks for his work.:hugs:
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
65
66
67
68
69
70
71
72

## <a name="todo"></a>:climbing:TODO

- [x] Release code and pretrained models:computer:.
- [x] Update links to paper and project page:link:.
- [x] Release real47 testset:minidisc:.
- [ ] Provide webui and reduce the memory usage of DiffBIR:fire::fire::fire:.
- [ ] Provide HuggingFace demo:notebook::fire::fire::fire:.
73
- [ ] Add a patch-based sampling schedule:mag:.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
74
75
76
- [x] Upload inference code of latent image guidance:page_facing_up:.
- [ ] Improve the performance:superhero:.

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
77
## <a name="installation"></a>:gear:Installation
ziyannchen's avatar
ziyannchen committed
78
79
80
81
- **Python** >= 3.9
- **CUDA** >= 11.3
- **PyTorch** >= 1.12.1
- **xformers** == 0.0.16
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
82
83

```shell
ziyannchen's avatar
ziyannchen committed
84
85
86
87
# clone this repo
git clone https://github.com/XPixelGroup/DiffBIR.git
cd DiffBIR

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
88
89
90
# create a conda environment with python >= 3.9
conda create -n diffbir python=3.9
conda activate diffbir
ziyannchen's avatar
ziyannchen committed
91
92

conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
93
conda install xformers==0.0.16 -c xformers
ziyannchen's avatar
ziyannchen committed
94

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
95
# other dependencies
ziyannchen's avatar
ziyannchen committed
96
pip install -r requirements.txt
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
97
98
99
100
```

## <a name="pretrained_models"></a>:dna:Pretrained Models

101
102
103
104
105
106
| Model Name | Description | HuggingFace | BaiduNetdisk | OpenXLab |
| :--------- | :---------- | :---------- | :---------- | :---------- |
| general_swinir_v1.ckpt | Stage1 model (SwinIR) for general image restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) | [download](https://pan.baidu.com/s/1uvSvJgcoL_Knj0h22-9TvA?pwd=v3v6) (pwd: v3v6) | [download](https://download.openxlab.org.cn/models/linxinqi/DiffBIR/weight//diffbir_general_swinir_v1) |
| general_full_v1.ckpt | Full model for general image restoration. "Full" means it contains both the stage1 and stage2 model. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) | [download](https://pan.baidu.com/s/1gLvW1nvkJStdVAKROqaYaA?pwd=86zi) (pwd: 86zi) | [download](https://download.openxlab.org.cn/models/linxinqi/DiffBIR/weight//diffbir_general_full_v1) |
| face_swinir_v1.ckpt | Stage1 model (SwinIR) for face restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt) | [download](https://pan.baidu.com/s/1cnBBC8437BJiM3q6suaK8g?pwd=xk5u) (pwd: xk5u) | [download](https://download.openxlab.org.cn/models/linxinqi/DiffBIR/weight//diffbir_face_swinir_v1) |
| face_full_v1.ckpt | Full model for face restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_full_v1.ckpt) | [download](https://pan.baidu.com/s/1pc04xvQybkynRfzK5Y8K0Q?pwd=ov8i) (pwd: ov8i) | [download](https://download.openxlab.org.cn/models/linxinqi/DiffBIR/weight//diffbir_face_full_v1) |
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
107
108
109

## <a name="quick_start"></a>:flight_departure:Quick Start

110
Download [general_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) and [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) to `weights/`, then run the following command to interact with the gradio website.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
111

112
```shell
ziyannchen's avatar
ziyannchen committed
113
python gradio_diffbir.py \
114
--ckpt weights/general_full_v1.ckpt \
ziyannchen's avatar
ziyannchen committed
115
116
--config configs/model/cldm.yaml \
--reload_swinir \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
117
118
--swinir_ckpt weights/general_swinir_v1.ckpt \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
119
120
121
122
123
124
125
126
127
128
129
130
```

<div align="center">
    <kbd><img src="assets/gradio.png"></img></kbd>
</div>

## <a name="inference"></a>:crossed_swords:Inference

### Full Pipeline (Remove Degradations & Refine Details)

#### General Image

131
Download [general_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) and [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) to `weights/` and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
132
133

```shell
ziyannchen's avatar
ziyannchen committed
134
python inference.py \
135
--input inputs/demo/general \
ziyannchen's avatar
ziyannchen committed
136
--config configs/model/cldm.yaml \
137
138
--ckpt weights/general_full_v1.ckpt \
--reload_swinir --swinir_ckpt weights/general_swinir_v1.ckpt \
ziyannchen's avatar
ziyannchen committed
139
140
141
142
--steps 50 \
--sr_scale 4 \
--image_size 512 \
--color_fix_type wavelet --resize_back \
143
--output results/demo/general \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
144
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
145
146
```

147
148
If you are confused about where the `reload_swinir` option came from, please refer to the [degradation details](#degradation-details).

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
149
#### Face Image
150
Download [face_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_full_v1.ckpt) to `weights/` and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
151

ziyannchen's avatar
ziyannchen committed
152
```shell
153
154
# for aligned face inputs
python inference_face.py \
ziyannchen's avatar
ziyannchen committed
155
--config configs/model/cldm.yaml \
156
--ckpt weights/face_full_v1.ckpt \
157
--input inputs/demo/face/aligned \
158
159
160
161
--steps 50 \
--sr_scale 1 \
--image_size 512 \
--color_fix_type wavelet \
162
--output results/demo/face/aligned --resize_back \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
163
164
--has_aligned \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
165

166
# for unaligned face inputs
ziyannchen's avatar
ziyannchen committed
167
168
169
python inference_face.py \
--config configs/model/cldm.yaml \
--ckpt weights/face_full_v1.ckpt \
170
--input inputs/demo/face/whole_img \
ziyannchen's avatar
ziyannchen committed
171
--steps 50 \
zycXD's avatar
zycXD committed
172
--sr_scale 2 \
ziyannchen's avatar
ziyannchen committed
173
174
--image_size 512 \
--color_fix_type wavelet \
175
--output results/demo/face/whole_img --resize_back \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
176
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
177
178
```

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
### Latent Image Guidance (Quality-fidelity trade-off)

Latent image guidance is used to achieve a trade-off bwtween quality and fidelity. We default to closing it since we prefer quality rather than fidelity. Here is an example:

```shell
python inference.py \
--input inputs/demo/general \
--config configs/model/cldm.yaml \
--ckpt weights/general_full_v1.ckpt \
--reload_swinir --swinir_ckpt weights/general_swinir_v1.ckpt \
--steps 50 \
--sr_scale 4 \
--image_size 512 \
--color_fix_type wavelet --resize_back \
--output results/demo/general \
--device cuda \
--use_guidance --g_scale 400 --g_t_start 200
```

You will see that the results become more smooth.

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
200
201
### Only Stage1 Model (Remove Degradations)

202
Download [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt), [face_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt) for general, face image respectively, and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
203
204

```shell
ziyannchen's avatar
ziyannchen committed
205
206
207
208
209
210
python scripts/inference_stage1.py \
--config configs/model/swinir.yaml \
--ckpt [swinir_ckpt_path] \
--input [lq_dir] \
--sr_scale 1 --image_size 512 \
--output [output_dir_path]
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
211
212
213
214
215
216
217
218
219
220
```

### Only Stage2 Model (Refine Details)

Since the proposed two-stage pipeline is very flexible, you can utilize other awesome models to remove degradations instead of SwinIR and then leverage the Stable Diffusion to refine details.

```shell
# step1: Use other models to remove degradations and save results in [img_dir_path].

# step2: Refine details of step1 outputs.
ziyannchen's avatar
ziyannchen committed
221
222
223
224
225
226
227
python inference.py \
--config configs/model/cldm.yaml \
--ckpt [full_ckpt_path] \
--steps 50 --sr_scale 1 --image_size 512 \
--input [img_dir_path] \
--color_fix_type wavelet --resize_back \
--output [output_dir_path] \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
228
229
--disable_preprocess_model \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
230
231
```

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
232
## <a name="train"></a>:stars:Train
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
233
234
235
236
237
238
239
240
241
242
243
244

### Degradation Details

For general image restoration, we first train both the stage1 and stage2 model under codeformer degradation to enhance the generative capacity of the stage2 model. In order to improve the ability for degradation removal, we train another stage1 model under Real-ESRGAN degradation and utilize it during inference.

For face image restoration, we adopt the degradation model used in [DifFace](https://github.com/zsyOAOA/DifFace/blob/master/configs/training/swinir_ffhq512.yaml) for training and directly utilize the SwinIR model released by them as our stage1 model.

### Data Preparation

1. Generate file list of training set and validation set.

    ```shell
ziyannchen's avatar
ziyannchen committed
245
246
247
248
249
    python scripts/make_file_list.py \
    --img_folder [hq_dir_path] \
    --val_size [validation_set_size] \
    --save_folder [save_dir_path] \
    --follow_links
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    ```
    
    This script will collect all image files in `img_folder` and split them into training set and validation set automatically. You will get two file lists in `save_folder`, each line in a file list contains an absolute path of an image file:
    
    ```
    save_folder
    ├── train.list # training file list
    └── val.list   # validation file list
    ```

2. Configure training set and validation set.

    For general image restoration, fill in the following configuration files with appropriate values.

    - [training set](configs/dataset/general_deg_codeformer_train.yaml) and [validation set](configs/dataset/general_deg_codeformer_val.yaml) for **CodeFormer** degradation.
    - [training set](configs/dataset/general_deg_realesrgan_train.yaml) and [validation set](configs/dataset/general_deg_realesrgan_val.yaml) for **Real-ESRGAN** degradation.

    For face image restoration, fill in the face [training set](configs/dataset/face_train.yaml) and [validation set](configs/dataset/face_val.yaml) configuration files with appropriate values.

### Train Stage1 Model

1. Configure training-related information.

    Fill in the configuration file of [training](configs/train_swinir.yaml) with appropriate values.

2. Start training.

    ```shell
    python train.py --config [training_config_path]
    ```

    :bulb::Checkpoints of SwinIR will be used in training stage2 model.

### Train Stage2 Model

1. Download pretrained [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) to provide generative capabilities.

    ```shell
    wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt --no-check-certificate
    ```

2. Create the initial model weights.

    ```shell
ziyannchen's avatar
ziyannchen committed
294
295
296
297
298
    python scripts/make_stage2_init_weight.py \
    --cldm_config configs/model/cldm.yaml \
    --sd_weight [sd_v2.1_ckpt_path] \
    --swinir_weight [swinir_ckpt_path] \
    --output [init_weight_output_path]
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
    ```

    You will see some [outputs](assets/init_weight_outputs.txt) which show the weight initialization.

3. Configure training-related information.

    Fill in the configuration file of [training](configs/train_cldm.yaml) with appropriate values.

4. Start training.

    ```shell
    python train.py --config [training_config_path]
    ```

## Citation

Please cite us if our work is useful for your research.

```
@article{2023diffbir,
  author    = {Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli Ouyang, Yu Qiao, Chao Dong},
  title     = {DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior},
  journal   = {arxiv},
  year      = {2023},
}
```

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Acknowledgement

This project is based on [ControlNet](https://github.com/lllyasviel/ControlNet) and [BasicSR](https://github.com/XPixelGroup/BasicSR). Thanks for their awesome work.

## Contact

If you have any questions, please feel free to contact with me at linxinqi@tju.edu.cn.