"vscode:/vscode.git/clone" did not exist on "552db98bf111ade526b351d7d1a0f8f1f950d359"
README.md 12.8 KB
Newer Older
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
1
2
3
4
5
6
<p align="center">
    <img src="assets/logo.png" width="400">
</p>

## DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
7
[Paper](https://arxiv.org/abs/2308.15070) | [Project Page](https://0x3f3f3f3fun.github.io/projects/diffbir/)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
8

9
![visitors](https://visitor-badge.laobi.icu/badge?page_id=XPixelGroup/DiffBIR) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
10
11
12

[Xinqi Lin](https://0x3f3f3f3fun.github.io/)<sup>1,\*</sup>, [Jingwen He](https://github.com/hejingwenhejingwen)<sup>2,\*</sup>, [Ziyan Chen](https://orcid.org/0000-0001-6277-5635)<sup>2</sup>, [Zhaoyang Lyu](https://scholar.google.com.tw/citations?user=gkXFhbwAAAAJ&hl=en)<sup>2</sup>, [Ben Fei](https://scholar.google.com/citations?user=skQROj8AAAAJ&hl=zh-CN&oi=ao)<sup>2</sup>, [Bo Dai](http://daibo.info/)<sup>2</sup>, [Wanli Ouyang](https://wlouyang.github.io/)<sup>2</sup>, [Yu Qiao](http://mmlab.siat.ac.cn/yuqiao)<sup>2</sup>, [Chao Dong](http://xpixel.group/2010/01/20/chaodong.html)<sup>1,2</sup>

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
13
<sup>1</sup>Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences<br><sup>2</sup>Shanghai AI Laboratory
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

<p align="center">
    <img src="assets/architecture.png" style="border-radius: 15px">
</p>

:star:If DiffBIR is helpful for you, please help star this repo. Thanks!:hugs:

## :book:Table Of Contents

- [Visual Results On Real-world Images](#visual_results)
- [Installation](#installation)
- [Pretrained Models](#pretrained_models)
- [Quick Start (gradio demo)](#quick_start)
- [Inference](#inference)
- [Train](#train)
- [Update](#update)
- [TODO](#todo)

## <a name="visual_results"></a>:eyes:Visual Results On Real-world Images

<!-- <details close>
<summary>General Image Restoration</summary> -->
### General Image Restoration

[<img src="assets/visual_results/general6.png" height="223px"/>](https://imgsli.com/MTk5ODI3) [<img src="assets/visual_results/general7.png" height="223px"/>](https://imgsli.com/MTk5ODI4) [<img src="assets/visual_results/general4.png" height="223px"/>](https://imgsli.com/MTk5ODI1)

[<img src="assets/visual_results/general1.png" height="223px"/>](https://imgsli.com/MTk5ODIy) [<img src="assets/visual_results/general2.png" height="223px"/>](https://imgsli.com/MTk5ODIz)

[<img src="assets/visual_results/general3.png" height="223px"/>](https://imgsli.com/MTk5ODI0) [<img src="assets/visual_results/general5.png" height="223px"/>](https://imgsli.com/MjAxMjM0)

<!-- </details> -->

<!-- <details close> -->
<!-- <summary>Face Image Restoration</summary> -->
### Face Image Restoration

[<img src="assets/visual_results/face1.png" height="223px"/>](https://imgsli.com/MTk5ODI5) [<img src="assets/visual_results/face2.png" height="223px"/>](https://imgsli.com/MTk5ODMw) [<img src="assets/visual_results/face3.png" height="223px"/>](https://imgsli.com/MTk5ODMy)

[<img src="assets/visual_results/face4.png" height="223px"/>](https://imgsli.com/MTk5ODM0) [<img src="assets/visual_results/face5.png" height="223px"/>](https://imgsli.com/MTk5ODM1) [<img src="assets/visual_results/face6.png" height="223px"/>](https://imgsli.com/MTk5ODM2)

54
55
[<img src="assets/visual_results/whole_image1.png" height="410px"/>](https://imgsli.com/MjA0MzQw)

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
56
57
58
<!-- </details> -->

## <a name="installation"></a>:gear:Installation
ziyannchen's avatar
ziyannchen committed
59
60
61
62
- **Python** >= 3.9
- **CUDA** >= 11.3
- **PyTorch** >= 1.12.1
- **xformers** == 0.0.16
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
63
64

```shell
ziyannchen's avatar
ziyannchen committed
65
66
67
68
# clone this repo
git clone https://github.com/XPixelGroup/DiffBIR.git
cd DiffBIR

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
69
70
71
# create a conda environment with python >= 3.9
conda create -n diffbir python=3.9
conda activate diffbir
ziyannchen's avatar
ziyannchen committed
72
73

conda install pytorch==1.12.1 torchvision==0.13.1 cudatoolkit=11.3 -c pytorch
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
74
conda install xformers==0.0.16 -c xformers
ziyannchen's avatar
ziyannchen committed
75

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
76
# other dependencies
ziyannchen's avatar
ziyannchen committed
77
pip install -r requirements.txt
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
78
79
80
81
```

## <a name="pretrained_models"></a>:dna:Pretrained Models

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
82
83
84
85
86
87
| Model Name | Description | HuggingFace | BaiduNetdisk |
| :--------- | :---------- | :---------- | :---------- |
| general_swinir_v1.ckpt | Stage1 model (SwinIR) for general image restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) | [download](https://pan.baidu.com/s/1uvSvJgcoL_Knj0h22-9TvA?pwd=v3v6) (pwd: v3v6) |
| general_full_v1.ckpt | Full model for general image restoration. "Full" means it contains both the stage1 and stage2 model. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) | [download](https://pan.baidu.com/s/1gLvW1nvkJStdVAKROqaYaA?pwd=86zi) (pwd: 86zi) |
| face_swinir_v1.ckpt | Stage1 model (SwinIR) for face restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt) | [download](https://pan.baidu.com/s/1cnBBC8437BJiM3q6suaK8g?pwd=xk5u) (pwd: xk5u) |
| face_full_v1.ckpt | Full model for face restoration. | [download](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_full_v1.ckpt) | [download](https://pan.baidu.com/s/1pc04xvQybkynRfzK5Y8K0Q?pwd=ov8i) (pwd: ov8i) |
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
88
89
90

## <a name="quick_start"></a>:flight_departure:Quick Start

91
Download [general_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) and [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) to `weights/`, then run the following command to interact with the gradio website.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
92
93

```
ziyannchen's avatar
ziyannchen committed
94
python gradio_diffbir.py \
95
--ckpt weights/general_full_v1.ckpt \
ziyannchen's avatar
ziyannchen committed
96
97
--config configs/model/cldm.yaml \
--reload_swinir \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
98
99
--swinir_ckpt weights/general_swinir_v1.ckpt \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
100
101
102
103
104
105
106
107
108
109
110
111
```

<div align="center">
    <kbd><img src="assets/gradio.png"></img></kbd>
</div>

## <a name="inference"></a>:crossed_swords:Inference

### Full Pipeline (Remove Degradations & Refine Details)

#### General Image

112
Download [general_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_full_v1.ckpt) and [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt) to `weights/` and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
113
114

```shell
ziyannchen's avatar
ziyannchen committed
115
116
117
python inference.py \
--input inputs/general \
--config configs/model/cldm.yaml \
118
119
--ckpt weights/general_full_v1.ckpt \
--reload_swinir --swinir_ckpt weights/general_swinir_v1.ckpt \
ziyannchen's avatar
ziyannchen committed
120
121
122
123
--steps 50 \
--sr_scale 4 \
--image_size 512 \
--color_fix_type wavelet --resize_back \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
124
125
--output results/general \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
126
127
```

128
129
If you are confused about where the `reload_swinir` option came from, please refer to the [degradation details](#degradation-details).

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
130
#### Face Image
131
Download [face_full_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_full_v1.ckpt) to `weights/` and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
132

ziyannchen's avatar
ziyannchen committed
133
```shell
134
135
# for aligned face inputs
python inference_face.py \
ziyannchen's avatar
ziyannchen committed
136
--config configs/model/cldm.yaml \
137
138
139
140
141
142
143
--ckpt weights/face_full_v1.ckpt \
--input inputs/face/aligned \
--steps 50 \
--sr_scale 1 \
--image_size 512 \
--color_fix_type wavelet \
--output results/face/aligned --resize_back \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
144
145
--has_aligned \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
146

147
# for unaligned face inputs
ziyannchen's avatar
ziyannchen committed
148
149
150
python inference_face.py \
--config configs/model/cldm.yaml \
--ckpt weights/face_full_v1.ckpt \
151
--input inputs/face/whole_img \
ziyannchen's avatar
ziyannchen committed
152
153
154
155
--steps 50 \
--sr_scale 1 \
--image_size 512 \
--color_fix_type wavelet \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
156
157
--output results/face/whole_img --resize_back \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
158
159
160
161
```

### Only Stage1 Model (Remove Degradations)

162
Download [general_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/general_swinir_v1.ckpt), [face_swinir_v1.ckpt](https://huggingface.co/lxq007/DiffBIR/resolve/main/face_swinir_v1.ckpt) for general, face image respectively, and run the following command.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
163
164

```shell
ziyannchen's avatar
ziyannchen committed
165
166
167
168
169
170
python scripts/inference_stage1.py \
--config configs/model/swinir.yaml \
--ckpt [swinir_ckpt_path] \
--input [lq_dir] \
--sr_scale 1 --image_size 512 \
--output [output_dir_path]
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
171
172
173
174
175
176
177
178
179
180
```

### Only Stage2 Model (Refine Details)

Since the proposed two-stage pipeline is very flexible, you can utilize other awesome models to remove degradations instead of SwinIR and then leverage the Stable Diffusion to refine details.

```shell
# step1: Use other models to remove degradations and save results in [img_dir_path].

# step2: Refine details of step1 outputs.
ziyannchen's avatar
ziyannchen committed
181
182
183
184
185
186
187
python inference.py \
--config configs/model/cldm.yaml \
--ckpt [full_ckpt_path] \
--steps 50 --sr_scale 1 --image_size 512 \
--input [img_dir_path] \
--color_fix_type wavelet --resize_back \
--output [output_dir_path] \
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
188
189
--disable_preprocess_model \
--device cuda
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
```

##  <a name="train"></a>:stars:Train

### Degradation Details

For general image restoration, we first train both the stage1 and stage2 model under codeformer degradation to enhance the generative capacity of the stage2 model. In order to improve the ability for degradation removal, we train another stage1 model under Real-ESRGAN degradation and utilize it during inference.

For face image restoration, we adopt the degradation model used in [DifFace](https://github.com/zsyOAOA/DifFace/blob/master/configs/training/swinir_ffhq512.yaml) for training and directly utilize the SwinIR model released by them as our stage1 model.

### Data Preparation

1. Generate file list of training set and validation set.

    ```shell
ziyannchen's avatar
ziyannchen committed
205
206
207
208
209
    python scripts/make_file_list.py \
    --img_folder [hq_dir_path] \
    --val_size [validation_set_size] \
    --save_folder [save_dir_path] \
    --follow_links
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    ```
    
    This script will collect all image files in `img_folder` and split them into training set and validation set automatically. You will get two file lists in `save_folder`, each line in a file list contains an absolute path of an image file:
    
    ```
    save_folder
    ├── train.list # training file list
    └── val.list   # validation file list
    ```

2. Configure training set and validation set.

    For general image restoration, fill in the following configuration files with appropriate values.

    - [training set](configs/dataset/general_deg_codeformer_train.yaml) and [validation set](configs/dataset/general_deg_codeformer_val.yaml) for **CodeFormer** degradation.
    - [training set](configs/dataset/general_deg_realesrgan_train.yaml) and [validation set](configs/dataset/general_deg_realesrgan_val.yaml) for **Real-ESRGAN** degradation.

    For face image restoration, fill in the face [training set](configs/dataset/face_train.yaml) and [validation set](configs/dataset/face_val.yaml) configuration files with appropriate values.

### Train Stage1 Model

1. Configure training-related information.

    Fill in the configuration file of [training](configs/train_swinir.yaml) with appropriate values.

2. Start training.

    ```shell
    python train.py --config [training_config_path]
    ```

    :bulb::Checkpoints of SwinIR will be used in training stage2 model.

### Train Stage2 Model

1. Download pretrained [Stable Diffusion v2.1](https://huggingface.co/stabilityai/stable-diffusion-2-1-base) to provide generative capabilities.

    ```shell
    wget https://huggingface.co/stabilityai/stable-diffusion-2-1-base/resolve/main/v2-1_512-ema-pruned.ckpt --no-check-certificate
    ```

2. Create the initial model weights.

    ```shell
ziyannchen's avatar
ziyannchen committed
254
255
256
257
258
    python scripts/make_stage2_init_weight.py \
    --cldm_config configs/model/cldm.yaml \
    --sd_weight [sd_v2.1_ckpt_path] \
    --swinir_weight [swinir_ckpt_path] \
    --output [init_weight_output_path]
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
    ```

    You will see some [outputs](assets/init_weight_outputs.txt) which show the weight initialization.

3. Configure training-related information.

    Fill in the configuration file of [training](configs/train_cldm.yaml) with appropriate values.

4. Start training.

    ```shell
    python train.py --config [training_config_path]
    ```

##  <a name="update"></a>:new:Update

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
275
- **2023.08.30**: Repo is released.
276
277
- **2023.09.06**: Update [colab demo](https://colab.research.google.com/github/camenduru/DiffBIR-colab/blob/main/DiffBIR_colab.ipynb). Thanks to [camenduru](https://github.com/camenduru)!:hugs:
- **2023.09.08**: Add support for restoring unaligned faces.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
278
279
280
281
282

##  <a name="todo"></a>:climbing:TODO

- [x] Release code and pretrained models:computer:.
- [x] Update links to paper and project page:link:.
283
284
285
286
- [ ] Release real47 testset:minidisc:.
- [ ] Reduce the memory usage of DiffBIR:smiley_cat:.
- [ ] Provide HuggingFace demo:notebook:.
- [ ] Upload inference code of latent image guidance:page_facing_up:.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
287
- [ ] Improve the performance:superhero:.
288
- [ ] Add a patch-based sampling schedule:mag:.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313

## Citation

Please cite us if our work is useful for your research.

```
@article{2023diffbir,
  author    = {Xinqi Lin, Jingwen He, Ziyan Chen, Zhaoyang Lyu, Ben Fei, Bo Dai, Wanli Ouyang, Yu Qiao, Chao Dong},
  title     = {DiffBIR: Towards Blind Image Restoration with Generative Diffusion Prior},
  journal   = {arxiv},
  year      = {2023},
}
```

## License

This project is released under the [Apache 2.0 license](LICENSE).

## Acknowledgement

This project is based on [ControlNet](https://github.com/lllyasviel/ControlNet) and [BasicSR](https://github.com/XPixelGroup/BasicSR). Thanks for their awesome work.

## Contact

If you have any questions, please feel free to contact with me at linxinqi@tju.edu.cn.