inference.py 9.7 KB
Newer Older
1
from typing import List, Tuple, Optional
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
2
3
4
5
6
7
8
9
10
11
12
import os
import math
from argparse import ArgumentParser, Namespace

import numpy as np
import torch
import einops
import pytorch_lightning as pl
from PIL import Image
from omegaconf import OmegaConf

0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
13
from ldm.xformers_state import disable_xformers
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
14
15
16
from model.spaced_sampler import SpacedSampler
from model.ddim_sampler import DDIMSampler
from model.cldm import ControlLDM
17
from model.cond_fn import MSEGuidance
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
from utils.image import (
    wavelet_reconstruction, adaptive_instance_normalization, auto_resize, pad
)
from utils.common import instantiate_from_config, load_state_dict
from utils.file import list_image_files, get_file_name_parts


@torch.no_grad()
def process(
    model: ControlLDM,
    control_imgs: List[np.ndarray],
    sampler: str,
    steps: int,
    strength: float,
    color_fix_type: str,
33
34
    disable_preprocess_model: bool,
    cond_fn: Optional[MSEGuidance]
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
35
36
37
38
39
40
41
42
43
) -> Tuple[List[np.ndarray], List[np.ndarray]]:
    """
    Apply DiffBIR model on a list of low-quality images.
    
    Args:
        model (ControlLDM): Model.
        control_imgs (List[np.ndarray]): A list of low-quality images (HWC, RGB, range in [0, 255])
        sampler (str): Sampler name.
        steps (int): Sampling steps.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
44
        strength (float): Control strength. Set to 1.0 during training.
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
        color_fix_type (str): Type of color correction for samples.
        disable_preprocess_model (bool): If specified, preprocess model (SwinIR) will not be used.
    
    Returns:
        preds (List[np.ndarray]): Restoration results (HWC, RGB, range in [0, 255]).
        stage1_preds (List[np.ndarray]): Outputs of preprocess model (HWC, RGB, range in [0, 255]). 
            If `disable_preprocess_model` is specified, then preprocess model's outputs is the same 
            as low-quality inputs.
    """
    n_samples = len(control_imgs)
    if sampler == "ddpm":
        sampler = SpacedSampler(model, var_type="fixed_small")
    else:
        sampler = DDIMSampler(model)
    control = torch.tensor(np.stack(control_imgs) / 255.0, dtype=torch.float32, device=model.device).clamp_(0, 1)
    control = einops.rearrange(control, "n h w c -> n c h w").contiguous()
    # TODO: model.preprocess_model = lambda x: x
    if not disable_preprocess_model and hasattr(model, "preprocess_model"):
        control = model.preprocess_model(control)
    elif disable_preprocess_model and not hasattr(model, "preprocess_model"):
        raise ValueError(f"model doesn't have a preprocess model.")
    
67
68
69
70
71
    # load latent image guidance
    if cond_fn is not None:
        print("load target of cond_fn")
        cond_fn.load_target((control * 2 - 1).float().clone())
    
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
    height, width = control.size(-2), control.size(-1)
    cond = {
        "c_latent": [model.apply_condition_encoder(control)],
        "c_crossattn": [model.get_learned_conditioning([""] * n_samples)]
    }
    model.control_scales = [strength] * 13
    
    shape = (n_samples, 4, height // 8, width // 8)
    x_T = torch.randn(shape, device=model.device, dtype=torch.float32)
    if isinstance(sampler, SpacedSampler):
        samples = sampler.sample(
            steps, shape, cond,
            unconditional_guidance_scale=1.0,
            unconditional_conditioning=None,
86
            cond_fn=cond_fn, x_T=x_T
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
        )
    else:
        sampler: DDIMSampler
        samples, _ = sampler.sample(
            S=steps, batch_size=shape[0], shape=shape[1:],
            conditioning=cond, unconditional_conditioning=None,
            x_T=x_T, eta=0
        )
    x_samples = model.decode_first_stage(samples)
    x_samples = ((x_samples + 1) / 2).clamp(0, 1)
    
    # apply color correction (borrowed from StableSR)
    if color_fix_type == "adain":
        x_samples = adaptive_instance_normalization(x_samples, control)
    elif color_fix_type == "wavelet":
        x_samples = wavelet_reconstruction(x_samples, control)
    else:
        assert color_fix_type == "none", f"unexpected color fix type: {color_fix_type}"
    
    x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
    control = (einops.rearrange(control, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8)
    
    preds = [x_samples[i] for i in range(n_samples)]
    stage1_preds = [control[i] for i in range(n_samples)]
    
    return preds, stage1_preds


def parse_args() -> Namespace:
    parser = ArgumentParser()
    
118
119
120
    # TODO: add help info for these options
    parser.add_argument("--ckpt", required=True, type=str, help="full checkpoint path")
    parser.add_argument("--config", required=True, type=str, help="model config path")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
121
122
123
124
125
126
127
128
129
130
131
    parser.add_argument("--reload_swinir", action="store_true")
    parser.add_argument("--swinir_ckpt", type=str, default="")
    
    parser.add_argument("--input", type=str, required=True)
    parser.add_argument("--sampler", type=str, default="ddpm", choices=["ddpm", "ddim"])
    parser.add_argument("--steps", required=True, type=int)
    parser.add_argument("--sr_scale", type=float, default=1)
    parser.add_argument("--image_size", type=int, default=512)
    parser.add_argument("--repeat_times", type=int, default=1)
    parser.add_argument("--disable_preprocess_model", action="store_true")
    
132
133
134
135
136
137
138
139
    # latent image guidance
    parser.add_argument("--use_guidance", action="store_true")
    parser.add_argument("--g_scale", type=float, default=0.0)
    parser.add_argument("--g_t_start", type=int, default=1001)
    parser.add_argument("--g_t_stop", type=int, default=-1)
    parser.add_argument("--g_space", type=str, default="latent")
    parser.add_argument("--g_repeat", type=int, default=5)
    
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
140
141
142
143
144
145
146
    parser.add_argument("--color_fix_type", type=str, default="wavelet", choices=["wavelet", "adain", "none"])
    parser.add_argument("--resize_back", action="store_true")
    parser.add_argument("--output", type=str, required=True)
    parser.add_argument("--show_lq", action="store_true")
    parser.add_argument("--skip_if_exist", action="store_true")
    
    parser.add_argument("--seed", type=int, default=231)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
147
    parser.add_argument("--device", type=str, default="cuda", choices=["cpu", "cuda"])
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
148
149
150
151
152
153
154
    
    return parser.parse_args()


def main() -> None:
    args = parse_args()
    pl.seed_everything(args.seed)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
155
156
157
    
    if args.device == "cpu":
        disable_xformers()
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
158
159
160
161
162
163
164
165
166
167
    
    model: ControlLDM = instantiate_from_config(OmegaConf.load(args.config))
    load_state_dict(model, torch.load(args.ckpt, map_location="cpu"), strict=True)
    # reload preprocess model if specified
    if args.reload_swinir:
        if not hasattr(model, "preprocess_model"):
            raise ValueError(f"model don't have a preprocess model.")
        print(f"reload swinir model from {args.swinir_ckpt}")
        load_state_dict(model.preprocess_model, torch.load(args.swinir_ckpt, map_location="cpu"), strict=True)
    model.freeze()
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
168
    model.to(args.device)
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
169
170
171
    
    assert os.path.isdir(args.input)
    
ziyannchen's avatar
ziyannchen committed
172
    print(f"sampling {args.steps} steps using {args.sampler} sampler")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    for file_path in list_image_files(args.input, follow_links=True):
        lq = Image.open(file_path).convert("RGB")
        if args.sr_scale != 1:
            lq = lq.resize(
                tuple(math.ceil(x * args.sr_scale) for x in lq.size),
                Image.BICUBIC
            )
        lq_resized = auto_resize(lq, args.image_size)
        x = pad(np.array(lq_resized), scale=64)
        
        for i in range(args.repeat_times):
            save_path = os.path.join(args.output, os.path.relpath(file_path, args.input))
            parent_path, stem, _ = get_file_name_parts(save_path)
            save_path = os.path.join(parent_path, f"{stem}_{i}.png")
            if os.path.exists(save_path):
                if args.skip_if_exist:
                    print(f"skip {save_path}")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
190
                    continue
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
191
                else:
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
192
193
194
                    raise RuntimeError(f"{save_path} already exist")
            os.makedirs(parent_path, exist_ok=True)
            
195
196
197
198
199
200
201
202
203
            # initialize latent image guidance
            if args.use_guidance:
                cond_fn = MSEGuidance(
                    scale=args.g_scale, t_start=args.g_t_start, t_stop=args.g_t_stop,
                    space=args.g_space, repeat=args.g_repeat
                )
            else:
                cond_fn = None
            
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
204
205
206
207
            preds, stage1_preds = process(
                model, [x], steps=args.steps, sampler=args.sampler,
                strength=1,
                color_fix_type=args.color_fix_type,
208
209
                disable_preprocess_model=args.disable_preprocess_model,
                cond_fn=cond_fn
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
            )
            pred, stage1_pred = preds[0], stage1_preds[0]
            
            # remove padding
            pred = pred[:lq_resized.height, :lq_resized.width, :]
            stage1_pred = stage1_pred[:lq_resized.height, :lq_resized.width, :]
            
            if args.show_lq:
                if args.resize_back:
                    if lq_resized.size != lq.size:
                        pred = np.array(Image.fromarray(pred).resize(lq.size, Image.LANCZOS))
                        stage1_pred = np.array(Image.fromarray(stage1_pred).resize(lq.size, Image.LANCZOS))
                    lq = np.array(lq)
                else:
                    lq = np.array(lq_resized)
                images = [lq, pred] if args.disable_preprocess_model else [lq, stage1_pred, pred]
                Image.fromarray(np.concatenate(images, axis=1)).save(save_path)
            else:
                if args.resize_back and lq_resized.size != lq.size:
                    Image.fromarray(pred).resize(lq.size, Image.LANCZOS).save(save_path)
                else:
                    Image.fromarray(pred).save(save_path)
            print(f"save to {save_path}")
0x3f3f3f3fun's avatar
0x3f3f3f3fun committed
233
234
235

if __name__ == "__main__":
    main()