NormalCell.py 11.2 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
Borrow from timm(https://github.com/rwightman/pytorch-image-models)
"""
import torch
import torch.nn as nn
import numpy as np

from .window import WindowAttention, window_partition, window_reverse
import math
from timm.models.layers import DropPath, to_2tuple, trunc_normal_


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.hidden_features = hidden_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads

        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x):
        B, N, C = x.shape
        qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]

        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class AttentionPerformer(nn.Module):
    def __init__(self, dim, num_heads=1, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., kernel_ratio=0.5):
        super().__init__()
        self.head_dim = dim // num_heads
        self.emb = dim
        self.kqv = nn.Linear(dim, 3 * self.emb)
        self.dp = nn.Dropout(proj_drop)
        self.proj = nn.Linear(self.emb, self.emb)
        self.head_cnt = num_heads
        self.norm1 = nn.LayerNorm(dim, eps=1e-6)
        self.epsilon = 1e-8  # for stable in division
        self.drop_path = nn.Identity()

        self.m = int(self.head_dim * kernel_ratio)
        self.w = torch.randn(self.head_cnt, self.m, self.head_dim)
        for i in range(self.head_cnt):
            self.w[i] = nn.Parameter(nn.init.orthogonal_(self.w[i]) * math.sqrt(self.m), requires_grad=False)
        self.w.requires_grad_(False)

    def prm_exp(self, x):
        # part of the function is borrow from https://github.com/lucidrains/performer-pytorch
        # and Simo Ryu (https://github.com/cloneofsimo)
        # ==== positive random features for gaussian kernels ====
        # x = (B, T, hs)
        # w = (m, hs)
        # return : x : B, T, m
        # SM(x, y) = E_w[exp(w^T x - |x|/2) exp(w^T y - |y|/2)]
        # therefore return exp(w^Tx - |x|/2)/sqrt(m)
        xd = ((x * x).sum(dim=-1, keepdim=True)).repeat(1, 1, 1, self.m) / 2
        wtx = torch.einsum('bhti,hmi->bhtm', x.float(), self.w.to(x.device))

        return torch.exp(wtx - xd) / math.sqrt(self.m)

    def attn(self, x):
        B, N, C = x.shape
        kqv = self.kqv(x).reshape(B, N, 3, self.head_cnt, self.head_dim).permute(2, 0, 3, 1, 4)
        k, q, v = kqv[0], kqv[1], kqv[2]  # (B, H, T, hs)

        kp, qp = self.prm_exp(k), self.prm_exp(q)  # (B, H, T, m), (B, H, T, m)
        D = torch.einsum('bhti,bhi->bht', qp, kp.sum(dim=2)).unsqueeze(
            dim=-1)  # (B, H, T, m) * (B, H, m) -> (B, H, T, 1)
        kptv = torch.einsum('bhin,bhim->bhnm', v.float(), kp)  # (B, H, emb, m)
        y = torch.einsum('bhti,bhni->bhtn', qp, kptv) / (
                    D.repeat(1, 1, 1, self.head_dim) + self.epsilon)  # (B, H, T, emb)/Diag

        # skip connection

        y = y.permute(0, 2, 1, 3).reshape(B, N, self.emb)
        y = self.dp(self.proj(y))  # same as token_transformer in T2T layer, use v as skip connection

        return y

    def forward(self, x):
        x = self.attn(x)
        return x


class NormalCell(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, class_token=False, group=64,
                 tokens_type='transformer',
                 shift_size=0, window_size=0, gamma=False, init_values=1e-4, SE=False, img_size=224):
        super().__init__()
        self.H = None
        self.W = None
        self.norm1 = norm_layer(dim)
        self.class_token = class_token
        self.img_size = img_size
        self.window_size = window_size
        self.shift_size = shift_size
        self.tokens_type = tokens_type
        if tokens_type == 'transformer':
            self.attn = Attention(
                dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        elif tokens_type == 'performer':
            self.attn = AttentionPerformer(
                dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
        elif tokens_type == 'window':
            self.attn = WindowAttention(
                in_dim=dim, out_dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
                qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)

        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
        self.PCM = nn.Sequential(
            nn.Conv2d(dim, mlp_hidden_dim, 3, 1, 1, 1, group),
            nn.BatchNorm2d(mlp_hidden_dim),
            nn.SiLU(inplace=True),
            nn.Conv2d(mlp_hidden_dim, dim, 3, 1, 1, 1, group),
            nn.BatchNorm2d(dim),
            nn.SiLU(inplace=True),
            nn.Conv2d(dim, dim, 3, 1, 1, 1, group),
        )
        if gamma:
            self.gamma1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
            self.gamma2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
            self.gamma3 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True)
        else:
            self.gamma1 = 1
            self.gamma2 = 1
            self.gamma3 = 1

    def forward(self, x):

        b, n, c = x.shape
        H, W = self.H, self.W
        assert n == H * W
        shortcut = x
        if self.tokens_type == 'window':
            padding_td = (self.window_size - H % self.window_size) % self.window_size
            padding_top = padding_td // 2
            padding_down = padding_td - padding_top
            padding_lr = (self.window_size - W % self.window_size) % self.window_size
            padding_left = padding_lr // 2
            padding_right = padding_lr - padding_left

            if self.shift_size > 0 and min(H, W) > self.window_size:
                shift_size = self.shift_size
            else:
                shift_size = 0
            if shift_size > 0:
                img_mask = torch.zeros((1, H + padding_td, W + padding_lr, 1)).cuda()  # 1 H W 1
                h_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -shift_size),
                            slice(-shift_size, None))
                w_slices = (slice(0, -self.window_size),
                            slice(-self.window_size, -shift_size),
                            slice(-shift_size, None))
                cnt = 0
                for h in h_slices:
                    for w in w_slices:
                        img_mask[:, h, w, :] = cnt
                        cnt += 1

                mask_windows = window_partition(img_mask, self.window_size)  # nW, window_size, window_size, 1
                mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
                attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
                attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
            else:
                attn_mask = None

            x = self.norm1(x)
            x = x.view(b, H, W, c).permute(0, 3, 1, 2)
            x = nn.functional.pad(x, (padding_left, padding_right, padding_top, padding_down))
            x = x.permute(0, 2, 3, 1)
            # cyclic shift
            if shift_size > 0:
                shifted_x = torch.roll(x, shifts=(-shift_size, -shift_size), dims=(1, 2))
            else:
                shifted_x = x
            # partition windows
            x_windows = window_partition(shifted_x, self.window_size)  # nW*B, window_size, window_size, C
            x_windows = x_windows.view(-1, self.window_size * self.window_size, c)  # nW*B, window_size*window_size, C
            # W-MSA/SW-MSA
            attn_windows = self.attn(x_windows, mask=attn_mask)  # nW*B, window_size*window_size, C

            # merge windows
            attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c)
            shifted_x = window_reverse(attn_windows, self.window_size, H + padding_td, W + padding_lr)  # B H' W' C

            # reverse cyclic shift
            if shift_size > 0:
                x = torch.roll(shifted_x, shifts=(shift_size, shift_size), dims=(1, 2))
            else:
                x = shifted_x
            x = x[:, padding_top:padding_top + H, padding_left:padding_left + W, :]
            x = x.reshape(b, H * W, c)
        else:
            x = self.gamma1 * self.attn(self.norm1(x))

        if self.class_token:
            n = n - 1
            wh = int(math.sqrt(n))
            convX = self.drop_path(
                self.gamma2 * self.PCM(shortcut[:, 1:, :].view(b, wh, wh, c).permute(0, 3, 1, 2).contiguous()).permute(
                    0, 2, 3, 1).contiguous().view(b, n, c))
            x = shortcut + self.drop_path(self.gamma1 * x)
            x[:, 1:] = x[:, 1:] + convX
        else:
            # wh = int(math.sqrt(n))
            convX = self.drop_path(
                self.gamma2 * self.PCM(shortcut.view(b, H, W, c).permute(0, 3, 1, 2).contiguous()).permute(0, 2, 3,
                                                                                                           1).contiguous().view(
                    b, n, c))
            x = shortcut + self.drop_path(self.gamma1 * x) + convX
            # x = x + convX
        x = x + self.drop_path(self.gamma3 * self.mlp(self.norm2(x)))
        return x


def get_sinusoid_encoding(n_position, d_hid):
    ''' Sinusoid position encoding table '''

    def get_position_angle_vec(position):
        return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)]

    sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)])
    sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2])  # dim 2i
    sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2])  # dim 2i+1

    return torch.FloatTensor(sinusoid_table).unsqueeze(0)