""" Borrow from timm(https://github.com/rwightman/pytorch-image-models) """ import torch import torch.nn as nn import numpy as np from .window import WindowAttention, window_partition, window_reverse import math from timm.models.layers import DropPath, to_2tuple, trunc_normal_ class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.hidden_features = hidden_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, N, C = x.shape qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) q, k, v = qkv[0], qkv[1], qkv[2] attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, N, C) x = self.proj(x) x = self.proj_drop(x) return x class AttentionPerformer(nn.Module): def __init__(self, dim, num_heads=1, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., kernel_ratio=0.5): super().__init__() self.head_dim = dim // num_heads self.emb = dim self.kqv = nn.Linear(dim, 3 * self.emb) self.dp = nn.Dropout(proj_drop) self.proj = nn.Linear(self.emb, self.emb) self.head_cnt = num_heads self.norm1 = nn.LayerNorm(dim, eps=1e-6) self.epsilon = 1e-8 # for stable in division self.drop_path = nn.Identity() self.m = int(self.head_dim * kernel_ratio) self.w = torch.randn(self.head_cnt, self.m, self.head_dim) for i in range(self.head_cnt): self.w[i] = nn.Parameter(nn.init.orthogonal_(self.w[i]) * math.sqrt(self.m), requires_grad=False) self.w.requires_grad_(False) def prm_exp(self, x): # part of the function is borrow from https://github.com/lucidrains/performer-pytorch # and Simo Ryu (https://github.com/cloneofsimo) # ==== positive random features for gaussian kernels ==== # x = (B, T, hs) # w = (m, hs) # return : x : B, T, m # SM(x, y) = E_w[exp(w^T x - |x|/2) exp(w^T y - |y|/2)] # therefore return exp(w^Tx - |x|/2)/sqrt(m) xd = ((x * x).sum(dim=-1, keepdim=True)).repeat(1, 1, 1, self.m) / 2 wtx = torch.einsum('bhti,hmi->bhtm', x.float(), self.w.to(x.device)) return torch.exp(wtx - xd) / math.sqrt(self.m) def attn(self, x): B, N, C = x.shape kqv = self.kqv(x).reshape(B, N, 3, self.head_cnt, self.head_dim).permute(2, 0, 3, 1, 4) k, q, v = kqv[0], kqv[1], kqv[2] # (B, H, T, hs) kp, qp = self.prm_exp(k), self.prm_exp(q) # (B, H, T, m), (B, H, T, m) D = torch.einsum('bhti,bhi->bht', qp, kp.sum(dim=2)).unsqueeze( dim=-1) # (B, H, T, m) * (B, H, m) -> (B, H, T, 1) kptv = torch.einsum('bhin,bhim->bhnm', v.float(), kp) # (B, H, emb, m) y = torch.einsum('bhti,bhni->bhtn', qp, kptv) / ( D.repeat(1, 1, 1, self.head_dim) + self.epsilon) # (B, H, T, emb)/Diag # skip connection y = y.permute(0, 2, 1, 3).reshape(B, N, self.emb) y = self.dp(self.proj(y)) # same as token_transformer in T2T layer, use v as skip connection return y def forward(self, x): x = self.attn(x) return x class NormalCell(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, class_token=False, group=64, tokens_type='transformer', shift_size=0, window_size=0, gamma=False, init_values=1e-4, SE=False, img_size=224): super().__init__() self.H = None self.W = None self.norm1 = norm_layer(dim) self.class_token = class_token self.img_size = img_size self.window_size = window_size self.shift_size = shift_size self.tokens_type = tokens_type if tokens_type == 'transformer': self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) elif tokens_type == 'performer': self.attn = AttentionPerformer( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) elif tokens_type == 'window': self.attn = WindowAttention( in_dim=dim, out_dim=dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.PCM = nn.Sequential( nn.Conv2d(dim, mlp_hidden_dim, 3, 1, 1, 1, group), nn.BatchNorm2d(mlp_hidden_dim), nn.SiLU(inplace=True), nn.Conv2d(mlp_hidden_dim, dim, 3, 1, 1, 1, group), nn.BatchNorm2d(dim), nn.SiLU(inplace=True), nn.Conv2d(dim, dim, 3, 1, 1, 1, group), ) if gamma: self.gamma1 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma2 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) self.gamma3 = nn.Parameter(init_values * torch.ones((dim)), requires_grad=True) else: self.gamma1 = 1 self.gamma2 = 1 self.gamma3 = 1 def forward(self, x): b, n, c = x.shape H, W = self.H, self.W assert n == H * W shortcut = x if self.tokens_type == 'window': padding_td = (self.window_size - H % self.window_size) % self.window_size padding_top = padding_td // 2 padding_down = padding_td - padding_top padding_lr = (self.window_size - W % self.window_size) % self.window_size padding_left = padding_lr // 2 padding_right = padding_lr - padding_left if self.shift_size > 0 and min(H, W) > self.window_size: shift_size = self.shift_size else: shift_size = 0 if shift_size > 0: img_mask = torch.zeros((1, H + padding_td, W + padding_lr, 1)).cuda() # 1 H W 1 h_slices = (slice(0, -self.window_size), slice(-self.window_size, -shift_size), slice(-shift_size, None)) w_slices = (slice(0, -self.window_size), slice(-self.window_size, -shift_size), slice(-shift_size, None)) cnt = 0 for h in h_slices: for w in w_slices: img_mask[:, h, w, :] = cnt cnt += 1 mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1 mask_windows = mask_windows.view(-1, self.window_size * self.window_size) attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2) attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0)) else: attn_mask = None x = self.norm1(x) x = x.view(b, H, W, c).permute(0, 3, 1, 2) x = nn.functional.pad(x, (padding_left, padding_right, padding_top, padding_down)) x = x.permute(0, 2, 3, 1) # cyclic shift if shift_size > 0: shifted_x = torch.roll(x, shifts=(-shift_size, -shift_size), dims=(1, 2)) else: shifted_x = x # partition windows x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C x_windows = x_windows.view(-1, self.window_size * self.window_size, c) # nW*B, window_size*window_size, C # W-MSA/SW-MSA attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C # merge windows attn_windows = attn_windows.view(-1, self.window_size, self.window_size, c) shifted_x = window_reverse(attn_windows, self.window_size, H + padding_td, W + padding_lr) # B H' W' C # reverse cyclic shift if shift_size > 0: x = torch.roll(shifted_x, shifts=(shift_size, shift_size), dims=(1, 2)) else: x = shifted_x x = x[:, padding_top:padding_top + H, padding_left:padding_left + W, :] x = x.reshape(b, H * W, c) else: x = self.gamma1 * self.attn(self.norm1(x)) if self.class_token: n = n - 1 wh = int(math.sqrt(n)) convX = self.drop_path( self.gamma2 * self.PCM(shortcut[:, 1:, :].view(b, wh, wh, c).permute(0, 3, 1, 2).contiguous()).permute( 0, 2, 3, 1).contiguous().view(b, n, c)) x = shortcut + self.drop_path(self.gamma1 * x) x[:, 1:] = x[:, 1:] + convX else: # wh = int(math.sqrt(n)) convX = self.drop_path( self.gamma2 * self.PCM(shortcut.view(b, H, W, c).permute(0, 3, 1, 2).contiguous()).permute(0, 2, 3, 1).contiguous().view( b, n, c)) x = shortcut + self.drop_path(self.gamma1 * x) + convX # x = x + convX x = x + self.drop_path(self.gamma3 * self.mlp(self.norm2(x))) return x def get_sinusoid_encoding(n_position, d_hid): ''' Sinusoid position encoding table ''' def get_position_angle_vec(position): return [position / np.power(10000, 2 * (hid_j // 2) / d_hid) for hid_j in range(d_hid)] sinusoid_table = np.array([get_position_angle_vec(pos_i) for pos_i in range(n_position)]) sinusoid_table[:, 0::2] = np.sin(sinusoid_table[:, 0::2]) # dim 2i sinusoid_table[:, 1::2] = np.cos(sinusoid_table[:, 1::2]) # dim 2i+1 return torch.FloatTensor(sinusoid_table).unsqueeze(0)