chat_utils.py 44.3 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
# SPDX-License-Identifier: Apache-2.0
# SPDX-FileCopyrightText: Copyright contributors to the vLLM project

import asyncio
import json
from abc import ABC, abstractmethod
from collections import defaultdict, deque
from collections.abc import Awaitable, Iterable
from functools import cached_property, lru_cache, partial
from pathlib import Path
from typing import (Any, Callable, Generic, Literal, Optional, TypeVar, Union,
                    cast)

import jinja2.nodes
import transformers.utils.chat_template_utils as hf_chat_utils
# yapf conflicts with isort for this block
# yapf: disable
from openai.types.chat import (ChatCompletionAssistantMessageParam,
                               ChatCompletionContentPartImageParam,
                               ChatCompletionContentPartInputAudioParam)
from openai.types.chat import (
    ChatCompletionContentPartParam as OpenAIChatCompletionContentPartParam)
from openai.types.chat import (ChatCompletionContentPartRefusalParam,
                               ChatCompletionContentPartTextParam)
from openai.types.chat import (
    ChatCompletionMessageParam as OpenAIChatCompletionMessageParam)
from openai.types.chat import (ChatCompletionMessageToolCallParam,
                               ChatCompletionToolMessageParam)
from openai.types.chat.chat_completion_content_part_input_audio_param import (
    InputAudio)
from PIL import Image
from pydantic import BaseModel, ConfigDict, TypeAdapter
# yapf: enable
from transformers import (PreTrainedTokenizer, PreTrainedTokenizerFast,
                          ProcessorMixin)
# pydantic needs the TypedDict from typing_extensions
from typing_extensions import Required, TypeAlias, TypedDict

from vllm.config import ModelConfig
from vllm.logger import init_logger
from vllm.model_executor.model_loader import get_model_cls
from vllm.model_executor.models import SupportsMultiModal
from vllm.multimodal import MULTIMODAL_REGISTRY, MultiModalDataDict
from vllm.multimodal.utils import MediaConnector
# yapf: disable
from vllm.transformers_utils.chat_templates import (
    get_chat_template_fallback_path)
# yapf: enable
from vllm.transformers_utils.processor import cached_get_processor
from vllm.transformers_utils.tokenizer import AnyTokenizer, MistralTokenizer
from vllm.utils import deprecate_kwargs, random_uuid

logger = init_logger(__name__)


class AudioURL(TypedDict, total=False):
    url: Required[str]
    """
    Either a URL of the audio or a data URL with base64 encoded audio data.
    """


class ChatCompletionContentPartAudioParam(TypedDict, total=False):
    audio_url: Required[AudioURL]

    type: Required[Literal["audio_url"]]
    """The type of the content part."""


class ChatCompletionContentPartImageEmbedsParam(TypedDict, total=False):
    image_embeds: Required[Union[str, dict[str, str]]]
    """
    The image embeddings. It can be either:
    - A single base64 string.
    - A dictionary where each value is a base64 string.
    """
    type: Required[Literal["image_embeds"]]
    """The type of the content part."""


class VideoURL(TypedDict, total=False):
    url: Required[str]
    """
    Either a URL of the video or a data URL with base64 encoded video data.
    """


class ChatCompletionContentPartVideoParam(TypedDict, total=False):
    video_url: Required[VideoURL]

    type: Required[Literal["video_url"]]
    """The type of the content part."""


class PILImage(BaseModel):
    """
    A PIL.Image.Image object.
    """
    image_pil: Image.Image
    model_config = ConfigDict(arbitrary_types_allowed=True)


class CustomChatCompletionContentPILImageParam(TypedDict, total=False):
    """A simpler version of the param that only accepts a PIL image.

    Example:
    {
        "image_pil": ImageAsset('cherry_blossom').pil_image
    }
    """
    image_pil: Required[PILImage]


class CustomChatCompletionContentSimpleImageParam(TypedDict, total=False):
    """A simpler version of the param that only accepts a plain image_url.
    This is supported by OpenAI API, although it is not documented.

    Example:
    {
        "image_url": "https://example.com/image.jpg"
    }
    """
    image_url: Required[str]


class CustomChatCompletionContentSimpleAudioParam(TypedDict, total=False):
    """A simpler version of the param that only accepts a plain audio_url.

    Example:
    {
        "audio_url": "https://example.com/audio.mp3"
    }
    """
    audio_url: Required[str]


class CustomChatCompletionContentSimpleVideoParam(TypedDict, total=False):
    """A simpler version of the param that only accepts a plain audio_url.

    Example:
    {
        "video_url": "https://example.com/video.mp4"
    }
    """
    video_url: Required[str]


ChatCompletionContentPartParam: TypeAlias = Union[
    OpenAIChatCompletionContentPartParam, ChatCompletionContentPartAudioParam,
    ChatCompletionContentPartInputAudioParam,
    ChatCompletionContentPartVideoParam, ChatCompletionContentPartRefusalParam,
    CustomChatCompletionContentPILImageParam,
    CustomChatCompletionContentSimpleImageParam,
    ChatCompletionContentPartImageEmbedsParam,
    CustomChatCompletionContentSimpleAudioParam,
    CustomChatCompletionContentSimpleVideoParam, str]


class CustomChatCompletionMessageParam(TypedDict, total=False):
    """Enables custom roles in the Chat Completion API."""
    role: Required[str]
    """The role of the message's author."""

    content: Union[str, list[ChatCompletionContentPartParam]]
    """The contents of the message."""

    name: str
    """An optional name for the participant.

    Provides the model information to differentiate between participants of the
    same role.
    """

    tool_call_id: Optional[str]
    """Tool call that this message is responding to."""

    tool_calls: Optional[Iterable[ChatCompletionMessageToolCallParam]]
    """The tool calls generated by the model, such as function calls."""


ChatCompletionMessageParam = Union[OpenAIChatCompletionMessageParam,
                                   CustomChatCompletionMessageParam]


# TODO: Make fields ReadOnly once mypy supports it
class ConversationMessage(TypedDict, total=False):
    role: Required[str]
    """The role of the message's author."""

    content: Union[Optional[str], list[dict[str, str]]]
    """The contents of the message"""

    tool_call_id: Optional[str]
    """Tool call that this message is responding to."""

    name: Optional[str]
    """The name of the function to call"""

    tool_calls: Optional[Iterable[ChatCompletionMessageToolCallParam]]
    """The tool calls generated by the model, such as function calls."""


# Passed in by user
ChatTemplateContentFormatOption = Literal["auto", "string", "openai"]

# Used internally
_ChatTemplateContentFormat = Literal["string", "openai"]


def _is_var_access(node: jinja2.nodes.Node, varname: str) -> bool:
    if isinstance(node, jinja2.nodes.Name):
        return node.ctx == "load" and node.name == varname

    return False


def _is_attr_access(node: jinja2.nodes.Node, varname: str, key: str) -> bool:
    if isinstance(node, jinja2.nodes.Getitem):
        return (_is_var_access(node.node, varname)
                and isinstance(node.arg, jinja2.nodes.Const)
                and node.arg.value == key)

    if isinstance(node, jinja2.nodes.Getattr):
        return _is_var_access(node.node, varname) and node.attr == key

    return False


def _is_var_or_elems_access(
    node: jinja2.nodes.Node,
    varname: str,
    key: Optional[str] = None,
) -> bool:
    if isinstance(node, jinja2.nodes.Filter):
        return (node.node is not None
                and _is_var_or_elems_access(node.node, varname, key))
    if isinstance(node, jinja2.nodes.Test):
        return _is_var_or_elems_access(node.node, varname, key)

    if (isinstance(node, jinja2.nodes.Getitem)
            and isinstance(node.arg, jinja2.nodes.Slice)):
        return _is_var_or_elems_access(node.node, varname, key)

    # yapf: disable
    return (
        _is_attr_access(node, varname, key) if key
        else _is_var_access(node, varname)
    ) # yapf: enable


def _iter_nodes_assign_var_or_elems(root: jinja2.nodes.Node, varname: str):
    # Global variable that is implicitly defined at the root
    yield root, varname

    # Iterative BFS
    related_varnames = deque([varname])
    while related_varnames:
        related_varname = related_varnames.popleft()

        for assign_ast in root.find_all(jinja2.nodes.Assign):
            lhs = assign_ast.target
            rhs = assign_ast.node

            if _is_var_or_elems_access(rhs, related_varname):
                assert isinstance(lhs, jinja2.nodes.Name)
                yield assign_ast, lhs.name

                # Avoid infinite looping for self-assignment
                if lhs.name != related_varname:
                    related_varnames.append(lhs.name)


# NOTE: The proper way to handle this is to build a CFG so that we can handle
# the scope in which each variable is defined, but that is too complicated
def _iter_nodes_assign_messages_item(root: jinja2.nodes.Node):
    messages_varnames = [
        varname
        for _, varname in _iter_nodes_assign_var_or_elems(root, "messages")
    ]

    # Search for {%- for message in messages -%} loops
    for loop_ast in root.find_all(jinja2.nodes.For):
        loop_iter = loop_ast.iter
        loop_target = loop_ast.target

        for varname in messages_varnames:
            if _is_var_or_elems_access(loop_iter, varname):
                assert isinstance(loop_target, jinja2.nodes.Name)
                yield loop_ast, loop_target.name
                break


def _iter_nodes_assign_content_item(root: jinja2.nodes.Node):
    message_varnames = [
        varname for _, varname in _iter_nodes_assign_messages_item(root)
    ]

    # Search for {%- for content in message['content'] -%} loops
    for loop_ast in root.find_all(jinja2.nodes.For):
        loop_iter = loop_ast.iter
        loop_target = loop_ast.target

        for varname in message_varnames:
            if _is_var_or_elems_access(loop_iter, varname, "content"):
                assert isinstance(loop_target, jinja2.nodes.Name)
                yield loop_ast, loop_target.name
                break


def _try_extract_ast(chat_template: str) -> Optional[jinja2.nodes.Template]:
    try:
        jinja_compiled = hf_chat_utils._compile_jinja_template(chat_template)
        return jinja_compiled.environment.parse(chat_template)
    except Exception:
        logger.exception("Error when compiling Jinja template")
        return None


@lru_cache(maxsize=32)
def _detect_content_format(
    chat_template: str,
    *,
    default: _ChatTemplateContentFormat,
) -> _ChatTemplateContentFormat:
    jinja_ast = _try_extract_ast(chat_template)
    if jinja_ast is None:
        return default

    try:
        next(_iter_nodes_assign_content_item(jinja_ast))
    except StopIteration:
        return "string"
    except Exception:
        logger.exception("Error when parsing AST of Jinja template")
        return default
    else:
        return "openai"


def resolve_mistral_chat_template(
    chat_template: Optional[str],
    **kwargs: Any,
) -> Optional[str]:
    if chat_template is not None:
        logger.warning_once(
            "'chat_template' cannot be overridden for mistral tokenizer.")
    if "add_generation_prompt" in kwargs:
        logger.warning_once(
            "'add_generation_prompt' is not supported for mistral tokenizer, "
            "so it will be ignored.")
    if "continue_final_message" in kwargs:
        logger.warning_once(
            "'continue_final_message' is not supported for mistral tokenizer, "
            "so it will be ignored.")
    return None

@deprecate_kwargs(
    "trust_remote_code",
    additional_message="Please use `model_config.trust_remote_code` instead.",
)
def resolve_hf_chat_template(
    tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
    chat_template: Optional[str],
    tools: Optional[list[dict[str, Any]]],
    *,
    model_config: ModelConfig,
    trust_remote_code: Optional[bool] = None,
) -> Optional[str]:
    # 1st priority: The given chat template
    if chat_template is not None:
        return chat_template

    # 2nd priority: AutoProcessor chat template, unless tool calling is enabled
    if tools is None:
        try:
            processor = cached_get_processor(
                tokenizer.name_or_path,
                processor_cls=(PreTrainedTokenizer, PreTrainedTokenizerFast,
                               ProcessorMixin),
                trust_remote_code=model_config.trust_remote_code,
            )
            if isinstance(processor, ProcessorMixin) and \
                hasattr(processor, 'chat_template') and \
                processor.chat_template is not None:
                return processor.chat_template
        except Exception:
            logger.debug("Failed to load AutoProcessor chat template for %s", tokenizer.name_or_path, exc_info=True)  # noqa: E501

    # 3rd priority: AutoTokenizer chat template
    try:
        return tokenizer.get_chat_template(chat_template, tools=tools)
    except Exception:
        logger.debug("Failed to load AutoTokenizer chat template for %s",
                     tokenizer.name_or_path, exc_info=True)

    # 4th priority: Predefined fallbacks
    path = get_chat_template_fallback_path(
        model_type=model_config.hf_config.model_type,
        tokenizer_name_or_path=model_config.tokenizer,
    )
    if path is not None:
        logger.info("Loading chat template fallback for %s as there isn't one "
                    "defined on HF Hub.", tokenizer.name_or_path)
        chat_template = load_chat_template(path)
    else:
        logger.debug("There is no chat template fallback for %s",
                     tokenizer.name_or_path)

    return chat_template


def _resolve_chat_template_content_format(
    chat_template: Optional[str],
    tools: Optional[list[dict[str, Any]]],
    tokenizer: AnyTokenizer,
    *,
    model_config: ModelConfig,
) -> _ChatTemplateContentFormat:
    if isinstance(tokenizer, (PreTrainedTokenizer, PreTrainedTokenizerFast)):
        hf_chat_template = resolve_hf_chat_template(
            tokenizer,
            chat_template=chat_template,
            tools=tools,
            model_config=model_config,
        )
    else:
        hf_chat_template = None

    jinja_text = (hf_chat_template if isinstance(hf_chat_template, str)
                  else load_chat_template(chat_template, is_literal=True))

    detected_format = ("string" if jinja_text is None else
                       _detect_content_format(jinja_text, default="string"))

    return detected_format


@lru_cache
def _log_chat_template_content_format(
    chat_template: Optional[str],
    given_format: ChatTemplateContentFormatOption,
    detected_format: ChatTemplateContentFormatOption,
):
    logger.info(
        "Detected the chat template content format to be '%s'. "
        "You can set `--chat-template-content-format` to override this.",
        detected_format,
    )

    if given_format != "auto" and given_format != detected_format:
        logger.warning(
            "You specified `--chat-template-content-format %s` "
            "which is different from the detected format '%s'. "
            "If our automatic detection is incorrect, please consider "
            "opening a GitHub issue so that we can improve it: "
            "https://github.com/vllm-project/vllm/issues/new/choose",
            given_format,
            detected_format,
        )


@deprecate_kwargs(
    "trust_remote_code",
    additional_message="Please use `model_config.trust_remote_code` instead.",
)
def resolve_chat_template_content_format(
    chat_template: Optional[str],
    tools: Optional[list[dict[str, Any]]],
    given_format: ChatTemplateContentFormatOption,
    tokenizer: AnyTokenizer,
    *,
    model_config: ModelConfig,
    trust_remote_code: Optional[bool] = None,
) -> _ChatTemplateContentFormat:
    if given_format != "auto":
        return given_format

    detected_format = _resolve_chat_template_content_format(
        chat_template,
        tools,
        tokenizer,
        model_config=model_config,
    )

    _log_chat_template_content_format(
        chat_template,
        given_format=given_format,
        detected_format=detected_format,
    )

    return detected_format



ModalityStr = Literal["image", "audio", "video", "image_embeds"]
_T = TypeVar("_T")


class BaseMultiModalItemTracker(ABC, Generic[_T]):
    """
    Tracks multi-modal items in a given request and ensures that the number
    of multi-modal items in a given request does not exceed the configured
    maximum per prompt.
    """

    def __init__(self, model_config: ModelConfig, tokenizer: AnyTokenizer):
        super().__init__()

        self._model_config = model_config
        self._tokenizer = tokenizer

        self._items_by_modality = defaultdict[str, list[_T]](list)

    @property
    def model_config(self) -> ModelConfig:
        return self._model_config

    @cached_property
    def model_cls(self):
        return get_model_cls(self.model_config)

    @property
    def allowed_local_media_path(self):
        return self._model_config.allowed_local_media_path

    @property
    def mm_registry(self):
        return MULTIMODAL_REGISTRY

    def add(self, modality: ModalityStr, item: _T) -> Optional[str]:
        """
        Add a multi-modal item to the current prompt and returns the
        placeholder string to use, if any.
        """
        mm_registry = self.mm_registry
        model_config = self.model_config
        model_cls = cast(SupportsMultiModal, self.model_cls)

        input_modality = modality.replace("_embeds", "")

        if mm_registry.has_processor(model_config):
            mm_processor = mm_registry.create_processor(model_config)
            allowed_counts = mm_processor.info.get_allowed_mm_limits()
            allowed_count = allowed_counts.get(input_modality, 0)
        else:
            mm_config = model_config.multimodal_config
            if mm_config is None:
                msg = "This model does not support multi-modal inputs"
                raise ValueError(msg)

            allowed_count = mm_config.get_limit_per_prompt(input_modality)

        current_count = len(self._items_by_modality[modality]) + 1
        if current_count > allowed_count:
            raise ValueError(
                f"At most {allowed_count} {modality}(s) may be provided in "
                "one request. You can set `--limit-mm-per-prompt` to "
                "increase this limit if the model supports it.")

        self._items_by_modality[modality].append(item)

        return model_cls.get_placeholder_str(modality, current_count)

    @abstractmethod
    def create_parser(self) -> "BaseMultiModalContentParser":
        raise NotImplementedError


class MultiModalItemTracker(BaseMultiModalItemTracker[object]):

    def all_mm_data(self) -> Optional[MultiModalDataDict]:
        if not self._items_by_modality:
            return None
        mm_inputs = {}
        items_by_modality = dict(self._items_by_modality)
        if "image" in items_by_modality and "image_embeds" in items_by_modality:
            raise ValueError(\
                "Mixing raw image and embedding inputs is not allowed")

        if "image_embeds" in items_by_modality:
            image_embeds_lst = items_by_modality["image_embeds"]
            if len(image_embeds_lst) > 1:
                raise ValueError(\
                    "Only one message can have {'type': 'image_embeds'}")
            mm_inputs["image"] = image_embeds_lst[0]
        if "image" in items_by_modality:
            mm_inputs["image"] = items_by_modality["image"] # A list of images
        if "audio" in items_by_modality:
            mm_inputs["audio"] = items_by_modality["audio"] # A list of audios
        if "video" in items_by_modality:
            mm_inputs["video"] = items_by_modality["video"] # A list of videos
        return mm_inputs

    def create_parser(self) -> "BaseMultiModalContentParser":
        return MultiModalContentParser(self)


class AsyncMultiModalItemTracker(BaseMultiModalItemTracker[Awaitable[object]]):

    async def all_mm_data(self) -> Optional[MultiModalDataDict]:
        if not self._items_by_modality:
            return None
        mm_inputs = {}
        items_by_modality = {
                modality: await asyncio.gather(*items)
                for modality, items in self._items_by_modality.items()
            }

        if "image" in items_by_modality and "image_embeds" in items_by_modality:
            raise ValueError(
                "Mixing raw image and embedding inputs is not allowed")

        if "image_embeds" in items_by_modality:
            image_embeds_lst = items_by_modality["image_embeds"]
            if len(image_embeds_lst) > 1:
                raise ValueError(
                    "Only one message can have {'type': 'image_embeds'}")
            mm_inputs["image"] = image_embeds_lst[0]
        if "image" in items_by_modality:
            mm_inputs["image"] = items_by_modality["image"] # A list of images
        if "audio" in items_by_modality:
            mm_inputs["audio"] = items_by_modality["audio"] # A list of audios
        if "video" in items_by_modality:
            mm_inputs["video"] = items_by_modality["video"] # A list of videos
        return mm_inputs

    def create_parser(self) -> "BaseMultiModalContentParser":
        return AsyncMultiModalContentParser(self)


class BaseMultiModalContentParser(ABC):

    def __init__(self) -> None:
        super().__init__()

        # multimodal placeholder_string : count
        self._placeholder_counts: dict[str, int] = defaultdict(lambda: 0)

    def _add_placeholder(self, placeholder: Optional[str]):
        if placeholder:
            self._placeholder_counts[placeholder] += 1

    def mm_placeholder_counts(self) -> dict[str, int]:
        return dict(self._placeholder_counts)

    @abstractmethod
    def parse_image(self, image_url: str) -> None:
        raise NotImplementedError

    @abstractmethod
    def parse_image_embeds(self,
                           image_embeds: Union[str, dict[str, str]]) -> None:
        raise NotImplementedError

    @abstractmethod
    def parse_image_pil(self, image_pil: Image.Image) -> None:
        raise NotImplementedError

    @abstractmethod
    def parse_audio(self, audio_url: str) -> None:
        raise NotImplementedError

    @abstractmethod
    def parse_input_audio(self, input_audio: InputAudio) -> None:
        raise NotImplementedError

    @abstractmethod
    def parse_video(self, video_url: str) -> None:
        raise NotImplementedError


class MultiModalContentParser(BaseMultiModalContentParser):

    def __init__(self, tracker: MultiModalItemTracker) -> None:
        super().__init__()

        self._tracker = tracker

        self._connector = MediaConnector(
            media_io_kwargs=self._tracker._model_config.media_io_kwargs,
            allowed_local_media_path=tracker.allowed_local_media_path,
        )

    def parse_image(self, image_url: str) -> None:
        image = self._connector.fetch_image(image_url)

        placeholder = self._tracker.add("image", image)
        self._add_placeholder(placeholder)

    def parse_image_embeds(self,
                           image_embeds: Union[str, dict[str, str]]) -> None:
        if isinstance(image_embeds, dict):
            embeds = {
                k: self._connector.fetch_image_embedding(v)
                for k, v in image_embeds.items()
            }
            placeholder = self._tracker.add("image_embeds", embeds)

        if isinstance(image_embeds, str):
            embedding = self._connector.fetch_image_embedding(image_embeds)
            placeholder = self._tracker.add("image_embeds", embedding)

        self._add_placeholder(placeholder)

    def parse_image_pil(self, image_pil: Image.Image) -> None:
        placeholder = self._tracker.add("image", image_pil)
        self._add_placeholder(placeholder)

    def parse_audio(self, audio_url: str) -> None:
        audio = self._connector.fetch_audio(audio_url)

        placeholder = self._tracker.add("audio", audio)
        self._add_placeholder(placeholder)

    def parse_input_audio(self, input_audio: InputAudio) -> None:
        audio_data = input_audio.get("data", "")
        audio_format = input_audio.get("format", "")
        audio_url = f"data:audio/{audio_format};base64,{audio_data}"

        return self.parse_audio(audio_url)

    def parse_video(self, video_url: str) -> None:
        video = self._connector.fetch_video(video_url=video_url)

        placeholder = self._tracker.add("video", video)
        self._add_placeholder(placeholder)


class AsyncMultiModalContentParser(BaseMultiModalContentParser):

    def __init__(self, tracker: AsyncMultiModalItemTracker) -> None:
        super().__init__()

        self._tracker = tracker
        self._connector = MediaConnector(
            media_io_kwargs=self._tracker._model_config.media_io_kwargs,
            allowed_local_media_path=tracker.allowed_local_media_path
        )

    def parse_image(self, image_url: str) -> None:
        image_coro = self._connector.fetch_image_async(image_url)

        placeholder = self._tracker.add("image", image_coro)
        self._add_placeholder(placeholder)

    def parse_image_embeds(self,
                           image_embeds: Union[str, dict[str, str]]) -> None:
        future: asyncio.Future[Union[str, dict[str, str]]] = asyncio.Future()

        if isinstance(image_embeds, dict):
            embeds = {
                k: self._connector.fetch_image_embedding(v)
                for k, v in image_embeds.items()
            }
            future.set_result(embeds)

        if isinstance(image_embeds, str):
            embedding = self._connector.\
                fetch_image_embedding(image_embeds)
            future.set_result(embedding)

        placeholder = self._tracker.add("image_embeds", future)
        self._add_placeholder(placeholder)

    def parse_image_pil(self, image_pil: Image.Image) -> None:
        future: asyncio.Future[Image.Image] = asyncio.Future()
        future.set_result(image_pil)

        placeholder = self._tracker.add("image", future)
        self._add_placeholder(placeholder)

    def parse_audio(self, audio_url: str) -> None:
        audio_coro = self._connector.fetch_audio_async(audio_url)

        placeholder = self._tracker.add("audio", audio_coro)
        self._add_placeholder(placeholder)

    def parse_input_audio(self, input_audio: InputAudio) -> None:
        audio_data = input_audio.get("data", "")
        audio_format = input_audio.get("format", "")
        audio_url = f"data:audio/{audio_format};base64,{audio_data}"

        return self.parse_audio(audio_url)

    def parse_video(self, video_url: str) -> None:
        video = self._connector.fetch_video_async(video_url=video_url)

        placeholder = self._tracker.add("video", video)
        self._add_placeholder(placeholder)


def validate_chat_template(chat_template: Optional[Union[Path, str]]):
    """Raises if the provided chat template appears invalid."""
    if chat_template is None:
        return

    elif isinstance(chat_template, Path) and not chat_template.exists():
        raise FileNotFoundError(
            "the supplied chat template path doesn't exist")

    elif isinstance(chat_template, str):
        JINJA_CHARS = "{}\n"
        if not any(c in chat_template
                   for c in JINJA_CHARS) and not Path(chat_template).exists():
            raise ValueError(
                f"The supplied chat template string ({chat_template}) "
                f"appears path-like, but doesn't exist!")

    else:
        raise TypeError(
            f"{type(chat_template)} is not a valid chat template type")


def _load_chat_template(
    chat_template: Optional[Union[Path, str]],
    *,
    is_literal: bool = False,
) -> Optional[str]:
    if chat_template is None:
        return None

    if is_literal:
        if isinstance(chat_template, Path):
            raise TypeError("chat_template is expected to be read directly "
                            "from its value")

        return chat_template

    try:
        with open(chat_template) as f:
            return f.read()
    except OSError as e:
        if isinstance(chat_template, Path):
            raise

        JINJA_CHARS = "{}\n"
        if not any(c in chat_template for c in JINJA_CHARS):
            msg = (f"The supplied chat template ({chat_template}) "
                   f"looks like a file path, but it failed to be "
                   f"opened. Reason: {e}")
            raise ValueError(msg) from e

        # If opening a file fails, set chat template to be args to
        # ensure we decode so our escape are interpreted correctly
        return _load_chat_template(chat_template, is_literal=True)


_cached_load_chat_template = lru_cache(_load_chat_template)


def load_chat_template(
    chat_template: Optional[Union[Path, str]],
    *,
    is_literal: bool = False,
) -> Optional[str]:
    return _cached_load_chat_template(chat_template, is_literal=is_literal)


# TODO: Let user specify how to insert multimodal tokens into prompt
# (similar to chat template)
def _get_full_multimodal_text_prompt(placeholder_counts: dict[str, int],
                                     text_prompt: str) -> str:
    """Combine multimodal prompts for a multimodal language model."""

    # Look through the text prompt to check for missing placeholders
    missing_placeholders: list[str] = []
    for placeholder in placeholder_counts:

        # For any existing placeholder in the text prompt, we leave it as is
        placeholder_counts[placeholder] -= text_prompt.count(placeholder)

        if placeholder_counts[placeholder] < 0:
            raise ValueError(
                f"Found more '{placeholder}' placeholders in input prompt than "
                "actual multimodal data items.")

        missing_placeholders.extend([placeholder] *
                                    placeholder_counts[placeholder])

    # NOTE: For now we always add missing placeholders at the front of
    # the prompt. This may change to be customizable in the future.
    return "\n".join(missing_placeholders + [text_prompt])


# No need to validate using Pydantic again
_TextParser = partial(cast, ChatCompletionContentPartTextParam)
_ImageEmbedsParser = partial(cast, ChatCompletionContentPartImageEmbedsParam)
_InputAudioParser = partial(cast, ChatCompletionContentPartInputAudioParam)
_RefusalParser = partial(cast, ChatCompletionContentPartRefusalParam)
_PILImageParser = partial(cast, CustomChatCompletionContentPILImageParam)
# Need to validate url objects
_ImageParser = TypeAdapter(ChatCompletionContentPartImageParam).validate_python
_AudioParser = TypeAdapter(ChatCompletionContentPartAudioParam).validate_python
_VideoParser = TypeAdapter(ChatCompletionContentPartVideoParam).validate_python

_ContentPart: TypeAlias = Union[str, dict[str, str], InputAudio, PILImage]

# Define a mapping from part types to their corresponding parsing functions.
MM_PARSER_MAP: dict[
    str,
    Callable[[ChatCompletionContentPartParam], _ContentPart],
] = {
    "text":
    lambda part: _TextParser(part).get("text", None),
    "image_url":
    lambda part: _ImageParser(part).get("image_url", {}).get("url", None),
    "image_embeds":
    lambda part: _ImageEmbedsParser(part).get("image_embeds", None),
    "image_pil": lambda part: _PILImageParser(part).get("image_pil", None),
    "audio_url":
    lambda part: _AudioParser(part).get("audio_url", {}).get("url", None),
    "input_audio":
    lambda part: _InputAudioParser(part).get("input_audio", None),
    "refusal":
    lambda part: _RefusalParser(part).get("refusal", None),
    "video_url":
    lambda part: _VideoParser(part).get("video_url", {}).get("url", None),
}


def _parse_chat_message_content_mm_part(
        part: ChatCompletionContentPartParam) -> tuple[str, _ContentPart]:
    """
    Parses a given multi-modal content part based on its type.

    Args:
        part: A dict containing the content part, with a potential 'type' field.

    Returns:
        A tuple (part_type, content) where:
        - part_type: Type of the part (e.g., 'text', 'image_url').
        - content: Parsed content (e.g., text, image URL).

    Raises:
        ValueError: If the 'type' field is missing and no direct URL is found.
    """
    assert isinstance(
        part, dict)  # This is needed to avoid mypy errors: part.get() from str
    part_type = part.get("type", None)

    if isinstance(part_type, str) and part_type in MM_PARSER_MAP:
        content = MM_PARSER_MAP[part_type](part)

        # Special case for 'image_url.detail'
        # We only support 'auto', which is the default
        if part_type == "image_url" and part.get("detail", "auto") != "auto":
            logger.warning("'image_url.detail' is currently not supported "
                           "and will be ignored.")

        return part_type, content

    # Handle missing 'type' but provided direct URL fields.
    # 'type' is required field by pydantic
    if part_type is None:
        if part.get("image_url") is not None:
            image_params = cast(CustomChatCompletionContentSimpleImageParam,
                                part)
            return "image_url", image_params.get("image_url", "")
        if part.get("audio_url") is not None:
            audio_params = cast(CustomChatCompletionContentSimpleAudioParam,
                                part)
            return "audio_url", audio_params.get("audio_url", "")
        if part.get("input_audio") is not None:
            input_audio_params = cast(dict[str, str], part)
            return "input_audio", input_audio_params
        if part.get("video_url") is not None:
            video_params = cast(CustomChatCompletionContentSimpleVideoParam,
                                part)
            return "video_url", video_params.get("video_url", "")
        # Raise an error if no 'type' or direct URL is found.
        raise ValueError("Missing 'type' field in multimodal part.")

    if not isinstance(part_type, str):
        raise ValueError("Invalid 'type' field in multimodal part.")
    return part_type, "unknown part_type content"


VALID_MESSAGE_CONTENT_MM_PART_TYPES = ("text", "refusal", "image_url",
                                       "image_embeds", "image_pil",
                                       "audio_url", "input_audio", "video_url")


def _parse_chat_message_content_parts(
    role: str,
    parts: Iterable[ChatCompletionContentPartParam],
    mm_tracker: BaseMultiModalItemTracker,
    *,
    wrap_dicts: bool,
) -> list[ConversationMessage]:
    content = list[_ContentPart]()

    mm_parser = mm_tracker.create_parser()

    for part in parts:
        parse_res = _parse_chat_message_content_part(
            part,
            mm_parser,
            wrap_dicts=wrap_dicts,
        )
        if parse_res:
            content.append(parse_res)

    if wrap_dicts:
        # Parsing wraps images and texts as interleaved dictionaries
        return [ConversationMessage(role=role,
                                    content=content)]  # type: ignore
    texts = cast(list[str], content)
    text_prompt = "\n".join(texts)
    mm_placeholder_counts = mm_parser.mm_placeholder_counts()
    if mm_placeholder_counts:
        text_prompt = _get_full_multimodal_text_prompt(mm_placeholder_counts,
                                                       text_prompt)
    return [ConversationMessage(role=role, content=text_prompt)]


def _parse_chat_message_content_part(
    part: ChatCompletionContentPartParam,
    mm_parser: BaseMultiModalContentParser,
    *,
    wrap_dicts: bool,
) -> Optional[_ContentPart]:
    """Parses a single part of a conversation. If wrap_dicts is True,
    structured dictionary pieces for texts and images will be
    wrapped in dictionaries, i.e., {"type": "text", "text", ...} and
    {"type": "image"}, respectively. Otherwise multimodal data will be
    handled by mm_parser, and texts will be returned as strings to be joined
    with multimodal placeholders.
    """
    if isinstance(part, str):  # Handle plain text parts
        return part

    # Handle structured dictionary parts
    part_type, content = _parse_chat_message_content_mm_part(part)

    # if part_type is text/refusal/image_url/audio_url/video_url/input_audio but
    # content is None, log a warning and skip
    if part_type in VALID_MESSAGE_CONTENT_MM_PART_TYPES and content is None:
        logger.warning(
            "Skipping multimodal part '%s' (type: '%s') "
            "with empty / unparsable content.", part, part_type)
        return None

    if part_type in ("text", "refusal"):
        str_content = cast(str, content)
        if wrap_dicts:
            return {'type': 'text', 'text': str_content}
        else:
            return str_content

    if part_type == "image_pil":
        image_content = cast(Image.Image, content)
        mm_parser.parse_image_pil(image_content)
        return {'type': 'image'} if wrap_dicts else None
    if part_type == "image_url":
        str_content = cast(str, content)
        mm_parser.parse_image(str_content)
        return {'type': 'image'} if wrap_dicts else None
    if part_type == "image_embeds":
        content = cast(Union[str, dict[str, str]], content)
        mm_parser.parse_image_embeds(content)
        return {'type': 'image'} if wrap_dicts else None
    if part_type == "audio_url":
        str_content = cast(str, content)
        mm_parser.parse_audio(str_content)
        return {'type': 'audio'} if wrap_dicts else None

    if part_type == "input_audio":
        dict_content = cast(InputAudio, content)
        mm_parser.parse_input_audio(dict_content)
        return {'type': 'audio'} if wrap_dicts else None

    if part_type == "video_url":
        str_content = cast(str, content)
        mm_parser.parse_video(str_content)
        return {'type': 'video'} if wrap_dicts else None

    raise NotImplementedError(f"Unknown part type: {part_type}")


# No need to validate using Pydantic again
_AssistantParser = partial(cast, ChatCompletionAssistantMessageParam)
_ToolParser = partial(cast, ChatCompletionToolMessageParam)


def _parse_chat_message_content(
    message: ChatCompletionMessageParam,
    mm_tracker: BaseMultiModalItemTracker,
    content_format: _ChatTemplateContentFormat,
) -> list[ConversationMessage]:
    role = message["role"]
    content = message.get("content")

    if content is None:
        content = []
    elif isinstance(content, str):
        content = [
            ChatCompletionContentPartTextParam(type="text", text=content)
        ]
    result = _parse_chat_message_content_parts(
        role,
        content,  # type: ignore
        mm_tracker,
        wrap_dicts=(content_format == "openai"),
    )

    for result_msg in result:
        if role == 'assistant':
            parsed_msg = _AssistantParser(message)

            # The 'tool_calls' is not None check ensures compatibility.
            # It's needed only if downstream code doesn't strictly
            # follow the OpenAI spec.
            if ("tool_calls" in parsed_msg
                and parsed_msg["tool_calls"] is not None):
                result_msg["tool_calls"] = list(parsed_msg["tool_calls"])
        elif role == "tool":
            parsed_msg = _ToolParser(message)
            if "tool_call_id" in parsed_msg:
                result_msg["tool_call_id"] = parsed_msg["tool_call_id"]

        if "name" in message and isinstance(message["name"], str):
            result_msg["name"] = message["name"]

    return result


def _postprocess_messages(messages: list[ConversationMessage]) -> None:
    # per the Transformers docs & maintainers, tool call arguments in
    # assistant-role messages with tool_calls need to be dicts not JSON str -
    # this is how tool-use chat templates will expect them moving forwards
    # so, for messages that have tool_calls, parse the string (which we get
    # from openAI format) to dict
    for message in messages:
        if (message["role"] == "assistant" and "tool_calls" in message
                and isinstance(message["tool_calls"], list)):

            for item in message["tool_calls"]:
                item["function"]["arguments"] = json.loads(
                    item["function"]["arguments"])


def parse_chat_messages(
    messages: list[ChatCompletionMessageParam],
    model_config: ModelConfig,
    tokenizer: AnyTokenizer,
    content_format: _ChatTemplateContentFormat,
) -> tuple[list[ConversationMessage], Optional[MultiModalDataDict]]:
    conversation: list[ConversationMessage] = []
    mm_tracker = MultiModalItemTracker(model_config, tokenizer)

    for msg in messages:
        sub_messages = _parse_chat_message_content(
            msg,
            mm_tracker,
            content_format,
        )

        conversation.extend(sub_messages)

    _postprocess_messages(conversation)

    return conversation, mm_tracker.all_mm_data()


def parse_chat_messages_futures(
    messages: list[ChatCompletionMessageParam],
    model_config: ModelConfig,
    tokenizer: AnyTokenizer,
    content_format: _ChatTemplateContentFormat,
) -> tuple[list[ConversationMessage], Awaitable[Optional[MultiModalDataDict]]]:
    conversation: list[ConversationMessage] = []
    mm_tracker = AsyncMultiModalItemTracker(model_config, tokenizer)

    for msg in messages:
        sub_messages = _parse_chat_message_content(
            msg,
            mm_tracker,
            content_format,
        )

        conversation.extend(sub_messages)

    _postprocess_messages(conversation)

    return conversation, mm_tracker.all_mm_data()


@deprecate_kwargs(
    "trust_remote_code",
    additional_message="Please use `model_config.trust_remote_code` instead.",
)
def apply_hf_chat_template(
    tokenizer: Union[PreTrainedTokenizer, PreTrainedTokenizerFast],
    conversation: list[ConversationMessage],
    chat_template: Optional[str],
    tools: Optional[list[dict[str, Any]]],
    *,
    model_config: ModelConfig,
    tokenize: bool = False,  # Different from HF's default
    # Deprecated, explicitly capture here so it doesn't slit into kwargs.
    trust_remote_code: Optional[bool] = None,
    **kwargs: Any,
) -> str:
    hf_chat_template = resolve_hf_chat_template(
        tokenizer,
        chat_template=chat_template,
        tools=tools,
        model_config=model_config,
    )

    if hf_chat_template is None:
        from .encoding_dsv32 import encode_messages
        encode_config = dict(thinking_mode="thinking", drop_thinking=True, add_default_bos_token=True)
        prompt = encode_messages(conversation, **encode_config)
        return tokenizer.encode(prompt)
        # raise ValueError(
        #     "As of transformers v4.44, default chat template is no longer "
        #     "allowed, so you must provide a chat template if the tokenizer "
        #     "does not define one.")

    try:

        return tokenizer.apply_chat_template(
            conversation=conversation,  # type: ignore[arg-type]
            tools=tools,  # type: ignore[arg-type]
            chat_template=hf_chat_template,
            tokenize=tokenize,
            **kwargs,
        )

    # External library exceptions can sometimes occur despite the framework's
    # internal exception management capabilities.
    except Exception as e:

        # Log and report any library-related exceptions for further
        # investigation.
        logger.exception(
            "An error occurred in `transformers` while applying chat template")
        raise ValueError(str(e)) from e

def apply_mistral_chat_template(
    tokenizer: MistralTokenizer,
    messages: list[ChatCompletionMessageParam],
    chat_template: Optional[str],
    tools: Optional[list[dict[str, Any]]],
    **kwargs: Any,
) -> list[int]:
    from mistral_common.exceptions import MistralCommonException

    # The return value of resolve_mistral_chat_template is always None,
    # and we won't use it.
    resolve_mistral_chat_template(
        chat_template=chat_template,
        **kwargs,
    )

    try:
        return tokenizer.apply_chat_template(
            messages=messages,
            tools=tools,
            **kwargs,
        )
    # mistral-common uses assert statements to stop processing of input
    # if input does not comply with the expected format.
    # We convert those assertion errors to ValueErrors so they can be
    # are properly caught in the preprocessing_input step
    except (AssertionError, MistralCommonException) as e:
        raise ValueError(str(e)) from e

    # External library exceptions can sometimes occur despite the framework's
    # internal exception management capabilities.
    except Exception as e:

        # Log and report any library-related exceptions for further
        # investigation.
        logger.exception(
            "An error occurred in `mistral_common` while applying chat "
            "template")
        raise ValueError(str(e)) from e

def random_tool_call_id() -> str:
    return f"chatcmpl-tool-{random_uuid()}"