kernel.py 5.16 KB
Newer Older
chenych's avatar
chenych committed
1
from typing import Tuple
chenych's avatar
chenych committed
2

chenych's avatar
chenych committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import torch
import triton
import triton.language as tl
from triton import Config


@triton.jit
def act_quant_kernel(x_ptr, y_ptr, s_ptr, BLOCK_SIZE: tl.constexpr):
    pid = tl.program_id(axis=0)
    offs = pid * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
    x = tl.load(x_ptr + offs).to(tl.float32)
    s = tl.max(tl.abs(x)) / 448.
    y = x / s
    y = y.to(y_ptr.dtype.element_ty)
    tl.store(y_ptr + offs, y)
    tl.store(s_ptr + pid, s)


def act_quant(x: torch.Tensor, block_size: int = 128) -> Tuple[torch.Tensor, torch.Tensor]:
    assert x.is_contiguous()
    assert x.size(-1) % block_size == 0
chenych's avatar
chenych committed
24
    y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
chenych's avatar
chenych committed
25
26
27
    s = x.new_empty(*x.size()[:-1], x.size(-1) // block_size, dtype=torch.float32)
    grid = lambda meta: (triton.cdiv(x.numel(), meta['BLOCK_SIZE']), )
    act_quant_kernel[grid](x, y, s, BLOCK_SIZE=block_size)
chenych's avatar
chenych committed
28
29
30
    return y, s


chenych's avatar
chenych committed
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# @triton.jit
# def weight_dequant_kernel(x_ptr, s_ptr, y_ptr, M, N, BLOCK_SIZE: tl.constexpr):
#     pid_m = tl.program_id(axis=0)
#     pid_n = tl.program_id(axis=1)
#     n = tl.cdiv(N, BLOCK_SIZE)
#     offs_m = pid_m * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
#     offs_n = pid_n * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
#     offs = offs_m[:, None] * N + offs_n[None, :]
#     mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
#     x = tl.load(x_ptr + offs, mask=mask).to(tl.float32)
#     s = tl.load(s_ptr + pid_m * n + pid_n)
#     y = x * s
#     tl.store(y_ptr + offs, y, mask=mask)


# def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
#     assert x.is_contiguous() and s.is_contiguous()
#     assert x.dim() == 2 and s.dim() == 2
#     M, N = x.size()
#     y = torch.empty_like(x, dtype=torch.get_default_dtype())
#     grid = lambda meta: (triton.cdiv(M, meta['BLOCK_SIZE']), triton.cdiv(N, meta['BLOCK_SIZE']))
#     weight_dequant_kernel[grid](x, s, y, M, N, BLOCK_SIZE=block_size)
#     return y


def weight_dequant(x: torch.Tensor, s: torch.Tensor, block_size: int = 128) -> torch.Tensor:
    assert x.is_contiguous() and s.is_contiguous()
    assert x.dim() == 2 and s.dim() == 2
    M, N = x.size()
    y = torch.empty_like(x, dtype=torch.get_default_dtype())

    # 计算 s 的目标形状
    s_M = (M + block_size - 1) // block_size  # 向上取整
    s_N = (N + block_size - 1) // block_size  # 向上取整

    # 检查 s 的形状是否正确
    assert s.size(0) == s_M and s.size(1) == s_N, \
        f"s 的形状应为 ({s_M}, {s_N}), 但实际为 {s.size()}"

    # 将 s 扩展到与 x 相同的形状
    s_expanded = s.repeat_interleave(block_size, dim=0).repeat_interleave(block_size, dim=1)

    # 裁剪 s_expanded 以匹配 x 的形状
    s_expanded = s_expanded[:M, :N]

    # 逐元素乘法
    y = x.to(torch.float32) * s_expanded
    
    y = y.to(torch.bfloat16)

    return y


fp8_gemm_configs = [
    Config({'BLOCK_SIZE_M': block_m, 'BLOCK_SIZE_N': block_n, 'BLOCK_SIZE_K': 128}, num_stages=num_stages, num_warps=8)
    for block_m in [16, 32, 64] for block_n in [32, 64, 128] for num_stages in [3, 4, 5, 6]
]

@triton.autotune(configs=fp8_gemm_configs, key=['N', 'K'])
@triton.jit
def fp8_gemm_kernel(a_ptr, b_ptr, c_ptr,
                    a_s_ptr, b_s_ptr,
                    M, N: tl.constexpr, K: tl.constexpr,
                    BLOCK_SIZE_M: tl.constexpr,
                    BLOCK_SIZE_N: tl.constexpr,
                    BLOCK_SIZE_K: tl.constexpr):
    pid_m = tl.program_id(axis=0)
    pid_n = tl.program_id(axis=1)
    k = tl.cdiv(K, BLOCK_SIZE_K)
    offs_m = (pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)) % M
    offs_n = (pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)) % N
    offs_k = tl.arange(0, BLOCK_SIZE_K)
    a_ptrs = a_ptr + offs_m[:, None] * K + offs_k[None, :]
    b_ptrs = b_ptr + offs_n[None, :] * K + offs_k[:, None]
    a_s_ptrs = a_s_ptr + offs_m * k
    b_s_ptrs = b_s_ptr + (offs_n // BLOCK_SIZE_K) * k

    accumulator = tl.zeros((BLOCK_SIZE_M, BLOCK_SIZE_N), dtype=tl.float32)
    for i in range(k):
        a = tl.load(a_ptrs, mask=offs_k[None, :] < K - i * BLOCK_SIZE_K, other=0.0)
        b = tl.load(b_ptrs, mask=offs_k[:, None] < K - i * BLOCK_SIZE_K, other=0.0)
        a_s = tl.load(a_s_ptrs)
        b_s = tl.load(b_s_ptrs)
        accumulator += tl.dot(a, b) * a_s[:, None] * b_s[None, :]
        a_ptrs += BLOCK_SIZE_K
        b_ptrs += BLOCK_SIZE_K
        a_s_ptrs += 1
        b_s_ptrs += 1
    c = accumulator.to(c_ptr.dtype.element_ty)
    offs_m = pid_m * BLOCK_SIZE_M + tl.arange(0, BLOCK_SIZE_M)
    offs_n = pid_n * BLOCK_SIZE_N + tl.arange(0, BLOCK_SIZE_N)
    c_ptrs = c_ptr + offs_m[:, None] * N + offs_n[None, :]
    mask = (offs_m[:, None] < M) & (offs_n[None, :] < N)
    tl.store(c_ptrs, c, mask=mask)


def fp8_gemm(a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor):
    assert a.is_contiguous() and b.is_contiguous()
    assert a_s.is_contiguous() and b_s.is_contiguous()
chenych's avatar
chenych committed
130
131
132
133
    K = a.size(-1)
    M = a.numel() // K
    N = b.size(0)
    c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
chenych's avatar
chenych committed
134
135
    grid = lambda META: (triton.cdiv(M, META['BLOCK_SIZE_M']), triton.cdiv(N, META['BLOCK_SIZE_N']))
    fp8_gemm_kernel[grid](a, b, c, a_s, b_s, M, N, K)
chenych's avatar
chenych committed
136
    return c