util.lua 6.22 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
--
-- code derived from https://github.com/soumith/dcgan.torch
--

local util = {}

require 'torch'


function util.BiasZero(net)
  net:apply(function(m) if torch.type(m):find('Convolution') then m.bias:zero() end end)
end


function util.checkEqual(A, B, name)
  local dif = (A:float()-B:float()):abs():mean()
  print(name, dif)
end

function util.containsValue(table, value)
  for k, v in pairs(table) do
    if v == value then return true end
  end
  return false
end


function util.CheckTensor(A, name)
  print(name, A:min(), A:max(), A:mean())
end


function util.normalize(img)
  -- rescale image to 0 .. 1
  local min = img:min()
  local max = img:max()

  img = torch.FloatTensor(img:size()):copy(img)
  img:add(-min):mul(1/(max-min))
  return img
end

function util.normalizeBatch(batch)
	for i = 1, batch:size(1) do
		batch[i] = util.normalize(batch[i]:squeeze())
	end
	return batch
end

function util.basename_batch(batch)
	for i = 1, #batch do
		batch[i] = paths.basename(batch[i])
	end
	return batch
end



-- default preprocessing
--
-- Preprocesses an image before passing it to a net
-- Converts from RGB to BGR and rescales from [0,1] to [-1,1]
function util.preprocess(img)
    -- RGB to BGR
    if img:size(1) == 3 then
      local perm = torch.LongTensor{3, 2, 1}
      img = img:index(1, perm)
    end
    -- [0,1] to [-1,1]
    img = img:mul(2):add(-1)

    -- check that input is in expected range
    assert(img:max()<=1,"badly scaled inputs")
    assert(img:min()>=-1,"badly scaled inputs")

    return img
end

-- Undo the above preprocessing.
function util.deprocess(img)
    -- BGR to RGB
    if img:size(1) == 3 then
      local perm = torch.LongTensor{3, 2, 1}
      img = img:index(1, perm)
    end

    -- [-1,1] to [0,1]
    img = img:add(1):div(2)

    return img
end

function util.preprocess_batch(batch)
	for i = 1, batch:size(1) do
		batch[i] = util.preprocess(batch[i]:squeeze())
	end
	return batch
end

function util.print_tensor(name, x)
  print(name, x:size(), x:min(), x:mean(), x:max())
end

function util.deprocess_batch(batch)
	for i = 1, batch:size(1) do
		batch[i] = util.deprocess(batch[i]:squeeze())
	end
	return batch
end


function util.scaleBatch(batch,s1,s2)
  -- print('s1', s1)
  -- print('s2', s2)
	local scaled_batch = torch.Tensor(batch:size(1),batch:size(2),s1,s2)
	for i = 1, batch:size(1) do
		scaled_batch[i] = image.scale(batch[i],s1,s2):squeeze()
	end
	return scaled_batch
end



function util.toTrivialBatch(input)
  return input:reshape(1,input:size(1),input:size(2),input:size(3))
end
function util.fromTrivialBatch(input)
    return input[1]
end

-- input is between -1 and 1
function util.jitter(input)
  local noise = torch.rand(input:size())/256.0
  input:add(1.0):mul(0.5*255.0/256.0):add(noise):add(-0.5):mul(2.0)
  --local scaled = (input+1.0)*0.5
  --local jittered = scaled*255.0/256.0 + torch.rand(input:size())/256.0
  --local scaled_back = (jittered-0.5)*2.0
  --return scaled_back
end

function util.scaleImage(input, loadSize)

    -- replicate bw images to 3 channels
    if input:size(1)==1 then
    	input = torch.repeatTensor(input,3,1,1)
    end

    input = image.scale(input, loadSize, loadSize)

    return input
end

function util.getAspectRatio(path)
	local input = image.load(path, 3, 'float')
	local ar = input:size(3)/input:size(2)
	return ar
end

function util.loadImage(path, loadSize, nc)
  local input = image.load(path, 3, 'float')
  input= util.preprocess(util.scaleImage(input, loadSize))

  if nc == 1 then
    input = input[{{1}, {}, {}}]
  end

  return input
end

function file_exists(filename)
   local f = io.open(filename,"r")
   if f ~= nil then io.close(f) return true else return false end
end

-- TO DO: loading code is rather hacky; clean it up and make sure it works on all types of nets / cpu/gpu configurations
function load_helper(filename, opt)
  fileExists = file_exists(filename)
  if not fileExists then
    print('model not found!    ' .. filename)
    return nil
  end
  print(('loading previously trained model (%s)'):format(filename))
	if opt.norm == 'instance' then
	  print('use InstanceNormalization')
	  require 'util.InstanceNormalization'
	end

	if opt.cudnn>0 then
		require 'cudnn'
	end

	local net = torch.load(filename)
	if opt.gpu > 0 then
		require 'cunn'
		net:cuda()

		-- calling cuda on cudnn saved nngraphs doesn't change all variables to cuda, so do it below
		if net.forwardnodes then
			for i=1,#net.forwardnodes do
				if net.forwardnodes[i].data.module then
					net.forwardnodes[i].data.module:cuda()
				end
			end
		end

	else
		net:float()
	end
	net:apply(function(m) if m.weight then
	    m.gradWeight = m.weight:clone():zero();
	    m.gradBias = m.bias:clone():zero(); end end)
	return net
end

function util.load_model(name, opt)
  -- if opt['lambda_'.. name] > 0.0 then
  -- print('not loading model '.. opt.checkpoints_dir .. opt.name ..
  --         'latest_net_' .. name .. '.t7' .. ' because opt.lambda is not greater than zero')
  return load_helper(paths.concat(opt.checkpoints_dir, opt.name,
                                'latest_net_' .. name .. '.t7'), opt)
  -- end
end

function util.load_test_model(name, opt)
  return load_helper(paths.concat(opt.checkpoints_dir, opt.name,
                                    opt.which_epoch .. '_net_' .. name .. '.t7'), opt)
end


-- load dataset from the file system
-- |name|: name of the dataset. It's currently either 'A' or 'B'
-- function util.load_dataset(name, nc, opt, nc)
--   local tensortype = torch.getdefaulttensortype()
--   torch.setdefaulttensortype('torch.FloatTensor')
--
--   local new_opt = options.clone(opt)
--   new_opt.manualSeed = torch.random(1, 10000) -- fix seed
--   new_opt.nc = nc
--   torch.manualSeed(new_opt.manualSeed)
--   local data_loader = paths.dofile('../data/data.lua')
--   new_opt.phase = new_opt.phase .. name
--   local data = data_loader.new(new_opt.nThreads, new_opt)
--   print("Dataset Size " .. name .. ": ", data:size())
--
--   torch.setdefaulttensortype(tensortype)
--   return data
-- end



function util.cudnn(net)
	require 'cudnn'
	require 'util/cudnn_convert_custom'
	return cudnn_convert_custom(net, cudnn)
end

function util.save_model(net, net_name, weight)
  if weight > 0.0 then
	   torch.save(paths.concat(opt.checkpoints_dir, opt.name, net_name), net:clearState())
  end
end




return util