test.lua 3.69 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
-- usage: DATA_ROOT=/path/to/data/ name=expt1 which_direction=BtoA th test.lua
--
-- code derived from https://github.com/soumith/dcgan.torch and https://github.com/phillipi/pix2pix
require 'image'
require 'nn'
require 'nngraph'
require 'models.architectures'


util = paths.dofile('util/util.lua')
options = require 'options'
opt = options.parse_options('test')

-- initialize torch GPU/CPU mode
if opt.gpu > 0 then
  require 'cutorch'
  require 'cunn'
  cutorch.setDevice(opt.gpu)
  print ("GPU Mode")
  torch.setdefaulttensortype('torch.CudaTensor')
else
  torch.setdefaulttensortype('torch.FloatTensor')
  print ("CPU Mode")
end

-- setup visualization
visualizer = require 'util/visualizer'

function TableConcat(t1,t2)
  for i=1,#t2 do
    t1[#t1+1] = t2[i]
  end
  return t1
end


-- load data
local data_loader = nil
if opt.align_data > 0 then
  require 'data.aligned_data_loader'
  data_loader = AlignedDataLoader()
else
  require 'data.unaligned_data_loader'
  data_loader = UnalignedDataLoader()
end
print( "DataLoader " .. data_loader:name() .. " was created.")
data_loader:Initialize(opt)

if opt.how_many == 'all' then
  opt.how_many = data_loader:size()
end

opt.how_many = math.min(opt.how_many, data_loader:size())

-- set batch/instance normalization
set_normalization(opt.norm)

-- load model
opt.continue_train = 1
-- define model
if opt.model == 'cycle_gan' then
  require 'models.cycle_gan_model'
  model  = CycleGANModel()
elseif opt.model == 'one_direction_test' then
  require 'models.one_direction_test_model'
  model = OneDirectionTestModel()
elseif opt.model == 'pix2pix' then
  require 'models.pix2pix_model'
  model = Pix2PixModel()
elseif opt.model == 'bigan' then
  require 'models.bigan_model'
  model  = BiGANModel()
elseif opt.model == 'content_gan' then
  require 'models.content_gan_model'
  model = ContentGANModel()
else
  error('Please specify a correct model')
end
model:Initialize(opt)

local pathsA = {} -- paths to images A tested on
local pathsB = {} -- paths to images B tested on
local web_dir = paths.concat(opt.results_dir, opt.name .. '/' .. opt.which_epoch .. '_' .. opt.phase)
paths.mkdir(web_dir)
local image_dir = paths.concat(web_dir, 'images')
paths.mkdir(image_dir)
s1 = opt.fineSize
s2 = opt.fineSize / opt.aspect_ratio

visuals = {}

for n = 1, math.floor(opt.how_many) do
  print('processing batch ' .. n)
  local cur_dataA, cur_dataB, cur_pathsA, cur_pathsB = data_loader:GetNextBatch()

  cur_pathsA = util.basename_batch(cur_pathsA)
  cur_pathsB = util.basename_batch(cur_pathsB)
  print('pathsA', cur_pathsA)
  print('pathsB', cur_PathsB)
  model:Forward({real_A=cur_dataA, real_B=cur_dataB}, opt)

  visuals = model:GetCurrentVisuals(opt, opt.fineSize)

  for i,visual in ipairs(visuals) do
    if opt.resize_or_crop == 'scale_width' or opt.resize_or_crop == 'scale_height' then
      s1 = nil
      s2 = nil
    end
    visualizer.save_images(visual.img, paths.concat(image_dir, visual.label), {string.gsub(cur_pathsA[1],'.jpg','.png')}, s1, s2)
  end


  print('Saved images to: ', image_dir)
  pathsA = TableConcat(pathsA, cur_pathsA)
  pathsB = TableConcat(pathsB, cur_pathsB)
end

labels = {}
for i,visual in ipairs(visuals) do
  table.insert(labels, visual.label)
end

-- make webpage
io.output(paths.concat(web_dir, 'index.html'))
io.write('<table style="text-align:center;">')
io.write('<tr><td> Image </td>')
for i = 1, #labels do
  io.write('<td>' .. labels[i] .. '</td>')
end
io.write('</tr>')

for n = 1,math.floor(opt.how_many) do
  io.write('<tr>')
  io.write('<td>' .. tostring(n) .. '</td>')
  for j = 1, #labels do
    label = labels[j]
    io.write('<td><img src="./images/' .. label .. '/' .. string.gsub(pathsA[n],'.jpg','.png') .. '"/></td>')
  end
  io.write('</tr>')
end

io.write('</table>')