"vscode:/vscode.git/clone" did not exist on "6517bcc53ccf41a606905846b8e035f5b1fb56d5"
cycle_gan_model.lua 12.6 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
local class = require 'class'
require 'models.base_model'
require 'models.architectures'
require 'util.image_pool'

util = paths.dofile('../util/util.lua')
CycleGANModel = class('CycleGANModel', 'BaseModel')

function CycleGANModel:__init(conf)
  BaseModel.__init(self, conf)
  conf = conf or {}
end

function CycleGANModel:model_name()
  return 'CycleGANModel'
end

function CycleGANModel:InitializeStates(use_wgan)
  optimState = {learningRate=opt.lr, beta1=opt.beta1,}
  return optimState
end
-- Defines models and networks
function CycleGANModel:Initialize(opt)
  if opt.test == 0 then
    self.fakeAPool = ImagePool(opt.pool_size)
    self.fakeBPool = ImagePool(opt.pool_size)
  end
  -- define tensors
  if opt.test == 0 then  -- allocate tensors for training
    self.real_A = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
    self.real_B = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
    self.fake_A = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
    self.fake_B = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
    self.rec_A  = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
    self.rec_B  = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
  end
  -- load/define models
  local use_lsgan = ((opt.use_lsgan ~= nil) and (opt.use_lsgan == 1))
  if not use_lsgan then
    self.criterionGAN = nn.BCECriterion()
  else
    self.criterionGAN = nn.MSECriterion()
  end
  self.criterionRec = nn.AbsCriterion()

  local netG_A, netD_A, netG_B, netD_B = nil, nil, nil, nil
  if opt.continue_train == 1 then
    if opt.test == 1 then -- test mode
      netG_A = util.load_test_model('G_A', opt)
      netG_B = util.load_test_model('G_B', opt)

      --setup optnet to save a little bit of memory
      if opt.use_optnet == 1 then
        local sample_input = torch.randn(1, opt.input_nc, 2, 2)
        local optnet = require 'optnet'
        optnet.optimizeMemory(netG_A, sample_input, {inplace=true, reuseBuffers=true})
        optnet.optimizeMemory(netG_B, sample_input, {inplace=true, reuseBuffers=true})
      end
    else
      netG_A = util.load_model('G_A', opt)
      netG_B = util.load_model('G_B', opt)
      netD_A = util.load_model('D_A', opt)
      netD_B = util.load_model('D_B', opt)
    end
  else
    local use_sigmoid = (not use_lsgan)
    -- netG_test = defineG(opt.input_nc, opt.output_nc, opt.ngf, "resnet_unet", opt.arch)
    -- os.exit()
    netG_A = defineG(opt.input_nc, opt.output_nc, opt.ngf, opt.which_model_netG, opt.arch)
    print('netG_A...', netG_A)
    netD_A = defineD(opt.output_nc, opt.ndf, opt.which_model_netD, opt.n_layers_D, use_sigmoid)  -- no sigmoid layer
    print('netD_A...', netD_A)
    netG_B = defineG(opt.output_nc, opt.input_nc, opt.ngf, opt.which_model_netG, opt.arch)
    print('netG_B...', netG_B)
    netD_B = defineD(opt.input_nc, opt.ndf, opt.which_model_netD, opt.n_layers_D, use_sigmoid)  -- no sigmoid layer
    print('netD_B', netD_B)
  end

  self.netD_A = netD_A
  self.netG_A = netG_A
  self.netG_B = netG_B
  self.netD_B = netD_B

  -- define real/fake labels
  if opt.test == 0 then
    local D_A_size = self.netD_A:forward(self.real_B):size()  -- hack: assume D_size_A = D_size_B
    self.fake_label_A = torch.Tensor(D_A_size):fill(0.0)
    self.real_label_A = torch.Tensor(D_A_size):fill(1.0) -- no soft smoothing
    local D_B_size = self.netD_B:forward(self.real_A):size()  -- hack: assume D_size_A = D_size_B
    self.fake_label_B = torch.Tensor(D_B_size):fill(0.0)
    self.real_label_B = torch.Tensor(D_B_size):fill(1.0) -- no soft smoothing
    self.optimStateD_A = self:InitializeStates()
    self.optimStateG_A = self:InitializeStates()
    self.optimStateD_B = self:InitializeStates()
    self.optimStateG_B = self:InitializeStates()
    self:RefreshParameters()
    print('---------- # Learnable Parameters --------------')
    print(('G_A = %d'):format(self.parametersG_A:size(1)))
    print(('D_A = %d'):format(self.parametersD_A:size(1)))
    print(('G_B = %d'):format(self.parametersG_B:size(1)))
    print(('D_B = %d'):format(self.parametersD_B:size(1)))
    print('------------------------------------------------')
  end
end

-- Runs the forward pass of the network and
-- saves the result to member variables of the class
function CycleGANModel:Forward(input, opt)
  if opt.which_direction == 'BtoA' then
  	local temp = input.real_A:clone()
  	input.real_A = input.real_B:clone()
  	input.real_B = temp
  end

  if opt.test == 0 then
    self.real_A:copy(input.real_A)
    self.real_B:copy(input.real_B)
  end

  if opt.test == 1 then  -- forward for test
    if opt.gpu > 0 then
      self.real_A = input.real_A:cuda()
      self.real_B = input.real_B:cuda()
    else
      self.real_A = input.real_A:clone()
      self.real_B = input.real_B:clone()
    end
    self.fake_B = self.netG_A:forward(self.real_A):clone()
    self.fake_A = self.netG_B:forward(self.real_B):clone()
    self.rec_A  = self.netG_B:forward(self.fake_B):clone()
    self.rec_B  = self.netG_A:forward(self.fake_A):clone()
  end
end

-- create closure to evaluate f(X) and df/dX of discriminator
function CycleGANModel:fDx_basic(x, gradParams, netD, netG, real, fake, real_label, fake_label, opt)
  util.BiasZero(netD)
  util.BiasZero(netG)
  gradParams:zero()
  -- Real  log(D_A(B))
  local output = netD:forward(real)
  local errD_real = self.criterionGAN:forward(output, real_label)
  local df_do = self.criterionGAN:backward(output, real_label)
  netD:backward(real, df_do)
  -- Fake  + log(1 - D_A(G_A(A)))
  output = netD:forward(fake)
  local errD_fake = self.criterionGAN:forward(output, fake_label)
  local df_do2 = self.criterionGAN:backward(output, fake_label)
  netD:backward(fake, df_do2)
  -- Compute loss
  local errD = (errD_real + errD_fake) / 2.0
  return errD, gradParams
end


function CycleGANModel:fDAx(x, opt)
  -- use image pool that stores the old fake images
  fake_B = self.fakeBPool:Query(self.fake_B)
  self.errD_A, gradParams = self:fDx_basic(x, self.gradparametersD_A, self.netD_A, self.netG_A,
                            self.real_B, fake_B, self.real_label_A, self.fake_label_A, opt)
  return self.errD_A, gradParams
end


function CycleGANModel:fDBx(x, opt)
  -- use image pool that stores the old fake images
  fake_A = self.fakeAPool:Query(self.fake_A)
  self.errD_B, gradParams = self:fDx_basic(x, self.gradparametersD_B, self.netD_B, self.netG_B,
                            self.real_A, fake_A, self.real_label_B, self.fake_label_B, opt)
  return self.errD_B, gradParams
end


function CycleGANModel:fGx_basic(x, gradParams, netG, netD, netE, real, real2, real_label, lambda1, lambda2, opt)
  util.BiasZero(netD)
  util.BiasZero(netG)
  util.BiasZero(netE)  -- inverse mapping
  gradParams:zero()

  -- G should be identity if real2 is fed.
  local errI = nil
  local identity = nil
  if opt.lambda_identity > 0 then
    identity = netG:forward(real2):clone()
    errI = self.criterionRec:forward(identity, real2) * lambda2 * opt.lambda_identity
    local didentity_loss_do = self.criterionRec:backward(identity, real2):mul(lambda2):mul(opt.lambda_identity)
    netG:backward(real2, didentity_loss_do)
  end

  --- GAN loss: D_A(G_A(A))
  local fake = netG:forward(real):clone()
  local output = netD:forward(fake)
  local errG = self.criterionGAN:forward(output, real_label)
  local df_do1 = self.criterionGAN:backward(output, real_label)
  local df_d_GAN = netD:updateGradInput(fake, df_do1) --

  -- forward cycle loss
  local rec = netE:forward(fake):clone()
  local errRec = self.criterionRec:forward(rec, real) * lambda1
  local df_do2 = self.criterionRec:backward(rec, real):mul(lambda1)
  local df_do_rec = netE:updateGradInput(fake, df_do2)

  netG:backward(real, df_d_GAN + df_do_rec)

  -- backward cycle loss
  local fake2 = netE:forward(real2)--:clone()
  local rec2 = netG:forward(fake2)--:clone()
  local errAdapt = self.criterionRec:forward(rec2, real2) * lambda2
  local df_do_coadapt = self.criterionRec:backward(rec2, real2):mul(lambda2)
  netG:backward(fake2, df_do_coadapt)

  return gradParams, errG, errRec, errI, fake, rec, identity
end

function CycleGANModel:fGAx(x, opt)
  self.gradparametersG_A, self.errG_A, self.errRec_A, self.errI_A, self.fake_B, self.rec_A, self.identity_B =
  self:fGx_basic(x, self.gradparametersG_A, self.netG_A, self.netD_A, self.netG_B, self.real_A, self.real_B,
  self.real_label_A, opt.lambda_A, opt.lambda_B, opt)
  return self.errG_A, self.gradparametersG_A
end

function CycleGANModel:fGBx(x, opt)
  self.gradparametersG_B, self.errG_B, self.errRec_B, self.errI_B, self.fake_A, self.rec_B, self.identity_A =
  self:fGx_basic(x, self.gradparametersG_B, self.netG_B, self.netD_B, self.netG_A, self.real_B, self.real_A,
  self.real_label_B, opt.lambda_B, opt.lambda_A, opt)
  return self.errG_B, self.gradparametersG_B
end


function CycleGANModel:OptimizeParameters(opt)
  local fDA = function(x) return self:fDAx(x, opt) end
  local fGA = function(x) return self:fGAx(x, opt) end
  local fDB = function(x) return self:fDBx(x, opt) end
  local fGB = function(x) return self:fGBx(x, opt) end

  optim.adam(fGA, self.parametersG_A, self.optimStateG_A)
  optim.adam(fDA, self.parametersD_A, self.optimStateD_A)
  optim.adam(fGB, self.parametersG_B, self.optimStateG_B)
  optim.adam(fDB, self.parametersD_B, self.optimStateD_B)
end

function CycleGANModel:RefreshParameters()
  self.parametersD_A, self.gradparametersD_A = nil, nil -- nil them to avoid spiking memory
  self.parametersG_A, self.gradparametersG_A = nil, nil
  self.parametersG_B, self.gradparametersG_B = nil, nil
  self.parametersD_B, self.gradparametersD_B = nil, nil
  -- define parameters of optimization
  self.parametersG_A, self.gradparametersG_A = self.netG_A:getParameters()
  self.parametersD_A, self.gradparametersD_A = self.netD_A:getParameters()
  self.parametersG_B, self.gradparametersG_B = self.netG_B:getParameters()
  self.parametersD_B, self.gradparametersD_B = self.netD_B:getParameters()
end

function CycleGANModel:Save(prefix, opt)
  util.save_model(self.netG_A, prefix .. '_net_G_A.t7', 1)
  util.save_model(self.netD_A, prefix .. '_net_D_A.t7', 1)
  util.save_model(self.netG_B, prefix .. '_net_G_B.t7', 1)
  util.save_model(self.netD_B, prefix .. '_net_D_B.t7', 1)
end

function CycleGANModel:GetCurrentErrorDescription()
  description = ('[A] G: %.4f  D: %.4f  Rec: %.4f I: %.4f || [B] G: %.4f D: %.4f Rec: %.4f I:%.4f'):format(
                         self.errG_A and self.errG_A or -1,
                         self.errD_A and self.errD_A or -1,
                         self.errRec_A and self.errRec_A or -1,
                         self.errI_A and self.errI_A or -1,
                         self.errG_B and self.errG_B or -1,
                         self.errD_B and self.errD_B or -1,
                         self.errRec_B and self.errRec_B or -1,
                         self.errI_B and self.errI_B or -1)
  return description
end

function CycleGANModel:GetCurrentErrors()
  local errors = {errG_A=self.errG_A, errD_A=self.errD_A, errRec_A=self.errRec_A, errI_A=self.errI_A,
                  errG_B=self.errG_B, errD_B=self.errD_B, errRec_B=self.errRec_B, errI_B=self.errI_B}
  return errors
end

-- returns a string that describes the display plot configuration
function CycleGANModel:DisplayPlot(opt)
  if opt.lambda_identity > 0 then
    return 'errG_A,errD_A,errRec_A,errI_A,errG_B,errD_B,errRec_B,errI_B'
  else
    return 'errG_A,errD_A,errRec_A,errG_B,errD_B,errRec_B'
  end
end

function CycleGANModel:UpdateLearningRate(opt)
  local lrd = opt.lr / opt.niter_decay
  local old_lr = self.optimStateD_A['learningRate']
  local lr =  old_lr - lrd
  self.optimStateD_A['learningRate'] = lr
  self.optimStateD_B['learningRate'] = lr
  self.optimStateG_A['learningRate'] = lr
  self.optimStateG_B['learningRate'] = lr
  print(('update learning rate: %f -> %f'):format(old_lr, lr))
end

local function MakeIm3(im)
  if im:size(2) == 1 then
    local im3 = torch.repeatTensor(im, 1,3,1,1)
    return im3
  else
    return im
  end
end

function CycleGANModel:GetCurrentVisuals(opt, size)
  local visuals = {}
  table.insert(visuals, {img=MakeIm3(self.real_A), label='real_A'})
  table.insert(visuals, {img=MakeIm3(self.fake_B), label='fake_B'})
  table.insert(visuals, {img=MakeIm3(self.rec_A), label='rec_A'})
  if opt.test == 0 and opt.lambda_identity > 0 then
    table.insert(visuals, {img=MakeIm3(self.identity_A), label='identity_A'})
  end
  table.insert(visuals, {img=MakeIm3(self.real_B), label='real_B'})
  table.insert(visuals, {img=MakeIm3(self.fake_A), label='fake_A'})
  table.insert(visuals, {img=MakeIm3(self.rec_B), label='rec_B'})
  if opt.test == 0 and opt.lambda_identity > 0 then
    table.insert(visuals, {img=MakeIm3(self.identity_B), label='identity_B'})
  end
  return visuals
end