content_gan_model.lua 7.19 KB
Newer Older
dengjb's avatar
update  
dengjb committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
local class = require 'class'
require 'models.base_model'
require 'models.architectures'
require 'util.image_pool'
util = paths.dofile('../util/util.lua')
content = paths.dofile('../util/content_loss.lua')

ContentGANModel = class('ContentGANModel', 'BaseModel')

function ContentGANModel:__init(conf)
  BaseModel.__init(self, conf)
  conf = conf or {}
end

function ContentGANModel:model_name()
  return 'ContentGANModel'
end

function ContentGANModel:InitializeStates()
  local optimState = {learningRate=opt.lr, beta1=opt.beta1,}
  return optimState
end
-- Defines models and networks
function ContentGANModel:Initialize(opt)
  if opt.test == 0 then
    self.fakePool = ImagePool(opt.pool_size)
  end
  -- define tensors
  self.real_A = torch.Tensor(opt.batchSize, opt.input_nc, opt.fineSize, opt.fineSize)
  self.fake_B = torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)
  self.real_B = self.fake_B:clone() --torch.Tensor(opt.batchSize, opt.output_nc, opt.fineSize, opt.fineSize)

  -- load/define models
  self.criterionGAN = nn.MSECriterion()
  self.criterionContent = nn.AbsCriterion()
  self.contentFunc = content.defineContent(opt.content_loss, opt.layer_name)
  self.netG, self.netD = nil, nil
  if opt.continue_train == 1 then
    if opt.which_epoch then -- which_epoch option exists in test mode
      self.netG = util.load_test_model('G_A', opt)
      self.netD = util.load_test_model('D_A', opt)
    else
      self.netG = util.load_model('G_A', opt)
      self.netD = util.load_model('D_A', opt)
    end
  else
    self.netG = defineG(opt.input_nc, opt.output_nc, opt.ngf, opt.which_model_netG)
    print('netG...', self.netG)
    self.netD = defineD(opt.output_nc, opt.ndf, opt.which_model_netD, opt.n_layers_D, false)
    print('netD...', self.netD)
  end
  -- define real/fake labels
  netD_output_size = self.netD:forward(self.real_A):size()
  self.fake_label = torch.Tensor(netD_output_size):fill(0.0)
  self.real_label = torch.Tensor(netD_output_size):fill(1.0) -- no soft smoothing
  self.optimStateD = self:InitializeStates()
  self.optimStateG = self:InitializeStates()
  self:RefreshParameters()
  print('---------- # Learnable Parameters --------------')
  print(('G = %d'):format(self.parametersG:size(1)))
  print(('D = %d'):format(self.parametersD:size(1)))
  print('------------------------------------------------')
  -- os.exit()
end

-- Runs the forward pass of the network and
-- saves the result to member variables of the class
function ContentGANModel:Forward(input, opt)
  if opt.which_direction == 'BtoA' then
    local temp = input.real_A
    input.real_A = input.real_B
    input.real_B = temp
  end

  self.real_A:copy(input.real_A)
  self.real_B:copy(input.real_B)
  self.fake_B = self.netG:forward(self.real_A):clone()
  -- output = {self.fake_B}
  output =  {}
  -- if opt.test == 1 then

  -- end
  return output
end

-- create closure to evaluate f(X) and df/dX of discriminator
function ContentGANModel:fDx_basic(x, gradParams, netD, netG,
                                   real_target, fake_target, opt)
  util.BiasZero(netD)
  util.BiasZero(netG)
  gradParams:zero()

  local errD_real, errD_rec, errD_fake, errD = 0, 0, 0, 0
  -- Real  log(D_A(B))
  local output = netD:forward(real_target)
  errD_real = self.criterionGAN:forward(output, self.real_label)
  df_do = self.criterionGAN:backward(output, self.real_label)
  netD:backward(real_target, df_do)

  -- Fake  + log(1 - D_A(G_A(A)))
  output = netD:forward(fake_target)
  errD_fake = self.criterionGAN:forward(output, self.fake_label)
  df_do = self.criterionGAN:backward(output, self.fake_label)
  netD:backward(fake_target, df_do)
  errD = (errD_real + errD_fake) / 2.0
  -- print('errD', errD
  return errD, gradParams
end


function ContentGANModel:fDx(x, opt)
  fake_B = self.fakePool:Query(self.fake_B)
  self.errD, gradParams = self:fDx_basic(x, self.gradparametersD, self.netD, self.netG,
                                     self.real_B, fake_B, opt)
  return self.errD, gradParams
end

function ContentGANModel:fGx_basic(x, netG_source, netD_source, real_source, real_target, fake_target,
                                   gradParametersG_source, opt)
  util.BiasZero(netD_source)
  util.BiasZero(netG_source)
  gradParametersG_source:zero()
  -- GAN loss
  -- local df_d_GAN = torch.zeros(fake_target:size())
  -- local errGAN = 0
  -- local errRec = 0
    --- Domain GAN loss: D_A(G_A(A))
  local output = netD_source.output -- [hack] forward was already executed in fDx, so save computation netD_source:forward(fake_B) ---
  local errGAN = self.criterionGAN:forward(output, self.real_label)
  local df_do = self.criterionGAN:backward(output, self.real_label)
  local df_d_GAN = netD_source:updateGradInput(fake_target, df_do) ---:narrow(2,fake_AB:size(2)-output_nc+1, output_nc)

  -- content loss
  -- print('content_loss', opt.content_loss)
  -- function content.lossUpdate(criterionContent, real_source, fake_target, contentFunc, loss_type, weight)
  local errContent, df_d_content = content.lossUpdate(self.criterionContent, real_source, fake_target, self.contentFunc, opt.content_loss, opt.lambda_A)
  netG_source:forward(real_source)
  netG_source:backward(real_source, df_d_GAN  + df_d_content)
  -- print('errD', errGAN)
  return gradParametersG_source, errGAN, errContent
end

function ContentGANModel:fGx(x, opt)
  self.gradparametersG, self.errG, self.errCont =
  self:fGx_basic(x, self.netG, self.netD,
             self.real_A, self.real_B, self.fake_B,
             self.gradparametersG, opt)
  return self.errG, self.gradparametersG
end

function ContentGANModel:OptimizeParameters(opt)
  local fDx = function(x) return self:fDx(x, opt) end
  local fGx = function(x) return self:fGx(x, opt) end
  optim.adam(fDx, self.parametersD, self.optimStateD)
  optim.adam(fGx, self.parametersG, self.optimStateG)
end

function ContentGANModel:RefreshParameters()
  self.parametersD, self.gradparametersD = nil, nil -- nil them to avoid spiking memory
  self.parametersG, self.gradparametersG = nil, nil
  -- define parameters of optimization
  self.parametersG, self.gradparametersG = self.netG:getParameters()
  self.parametersD, self.gradparametersD = self.netD:getParameters()
end

function ContentGANModel:Save(prefix, opt)
  util.save_model(self.netG, prefix .. '_net_G_A.t7', 1.0)
  util.save_model(self.netD, prefix .. '_net_D_A.t7', 1.0)
end

function ContentGANModel:GetCurrentErrorDescription()
  description = ('G: %.4f  D: %.4f  Content: %.4f'):format(self.errG and self.errG or -1,
                         self.errD and self.errD or -1,
                         self.errCont and self.errCont or -1)
  return description
end


function ContentGANModel:GetCurrentErrors()
  local errors = {errG=self.errG and self.errG or -1, errD=self.errD and self.errD or -1,
  errCont=self.errCont and self.errCont or -1}
  return errors
end

-- returns a string that describes the display plot configuration
function ContentGANModel:DisplayPlot(opt)
  return 'errG,errD,errCont'
end


function ContentGANModel:GetCurrentVisuals(opt, size)
  if not size then
    size = opt.display_winsize
  end

  local visuals = {}
  table.insert(visuals, {img=self.real_A, label='real_A'})
  table.insert(visuals, {img=self.fake_B, label='fake_B'})
  table.insert(visuals, {img=self.real_B, label='real_B'})
  return visuals
end