utils.py 4.92 KB
Newer Older
dengjf's avatar
dengjf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
#!/usr/bin/python
# encoding: utf-8

import torch
import torch.nn as nn
from torch.autograd import Variable
import collections


class strLabelConverter(object):
    """Convert between str and label.

    NOTE:
        Insert `blank` to the alphabet for CTC.

    Args:
        alphabet (str): set of the possible characters.
        ignore_case (bool, default=True): whether or not to ignore all of the case.
    """

    def __init__(self, alphabet, ignore_case=True):
        self._ignore_case = ignore_case
        if self._ignore_case:
            alphabet = alphabet.lower()
        self.alphabet = alphabet + '-'  # for `-1` index

        self.dict = {}
        for i, char in enumerate(alphabet):
            # NOTE: 0 is reserved for 'blank' required by wrap_ctc
            self.dict[char] = i + 1

    def encode(self, text):
        """Support batch or single str.

        Args:
            text (str or list of str): texts to convert.

        Returns:
            torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.
            torch.IntTensor [n]: length of each text.
        """
        if isinstance(text, str):
            text = [
                self.dict[char.lower() if self._ignore_case else char]
                for char in text
            ]
            length = [len(text)]
dengjb's avatar
dengjb committed
48
        else:
dengjf's avatar
dengjf committed
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
            length = [len(s) for s in text]
            text = ''.join(text)
            text, _ = self.encode(text)
        return (torch.IntTensor(text), torch.IntTensor(length))

    def decode(self, t, length, raw=False):
        """Decode encoded texts back into strs.

        Args:
            torch.IntTensor [length_0 + length_1 + ... length_{n - 1}]: encoded texts.
            torch.IntTensor [n]: length of each text.

        Raises:
            AssertionError: when the texts and its length does not match.

        Returns:
            text (str or list of str): texts to convert.
        """
        if length.numel() == 1:
            length = length[0]
            assert t.numel() == length, "text with length: {} does not match declared length: {}".format(t.numel(), length)
            if raw:
                return ''.join([self.alphabet[i - 1] for i in t])
            else:
                char_list = []
                for i in range(length):
                    if t[i] != 0 and (not (i > 0 and t[i - 1] == t[i])):
                        char_list.append(self.alphabet[t[i] - 1])
                return ''.join(char_list)
        else:
            # batch mode
            assert t.numel() == length.sum(), "texts with length: {} does not match declared length: {}".format(t.numel(), length.sum())
            texts = []
            index = 0
            for i in range(length.numel()):
                l = length[i]
                texts.append(
                    self.decode(
                        t[index:index + l], torch.IntTensor([l]), raw=raw))
                index += l
            return texts


class averager(object):
    """Compute average for `torch.Variable` and `torch.Tensor`. """

    def __init__(self):
        self.reset()

    def add(self, v):
        if isinstance(v, Variable):
            count = v.data.numel()
            v = v.data.sum()
        elif isinstance(v, torch.Tensor):
            count = v.numel()
            v = v.sum()

        self.n_count += count
        self.sum += v

    def reset(self):
        self.n_count = 0
        self.sum = 0

    def val(self):
        res = 0
        if self.n_count != 0:
            res = self.sum / float(self.n_count)
        return res


def oneHot(v, v_length, nc):
    batchSize = v_length.size(0)
    maxLength = v_length.max()
    v_onehot = torch.FloatTensor(batchSize, maxLength, nc).fill_(0)
    acc = 0
    for i in range(batchSize):
        length = v_length[i]
        label = v[acc:acc + length].view(-1, 1).long()
        v_onehot[i, :length].scatter_(1, label, 1.0)
        acc += length
    return v_onehot


def loadData(v, data):
dengjb's avatar
dengjb committed
134
135
136
    # v.data.resize_(data.size()).copy_(data)
    with torch.no_grad():
        v.resize_(data.size()).copy_(data)
dengjf's avatar
dengjf committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151


def prettyPrint(v):
    print('Size {0}, Type: {1}'.format(str(v.size()), v.data.type()))
    print('| Max: %f | Min: %f | Mean: %f' % (v.max().data[0], v.min().data[0],
                                              v.mean().data[0]))


def assureRatio(img):
    """Ensure imgH <= imgW."""
    b, c, h, w = img.size()
    if h > w:
        main = nn.UpsamplingBilinear2d(size=(h, h), scale_factor=None)
        img = main(img)
    return img
dengjb's avatar
dengjb committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172

class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
dengjb's avatar
dengjb committed
173
        self.avg = self.sum / self.count