README.md 1.45 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
# WeNet On-device ASR iOS Demo

## Build application from source code

### 1) Generate cmake project, install LibTorch pod and build static libraries

```
cd runtime/ios/build
cmake .. -G Xcode -DTORCH=ON -DONNX=OFF -DIOS=ON -DGRAPH_TOOLS=OFF -DBUILD_TESTING=OFF -DCMAKE_TOOLCHAIN_FILE=../toolchains/ios.toolchain.cmake -DPLATFORM=OS64 -DENABLE_BITCODE=FALSE
pod install

# Build debug version
cmake --build . --config Debug

# Build release version
cmake --build . --config Release
```

### 2) Build and run iOS application

You can use our pretrained model (click the following link to download):

[AISHELL-1](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/aishell/20210601_u2%2B%2B_conformer_libtorch.tar.gz)
| [AISHELL-2](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/aishell2/20210618_u2pp_conformer_libtorch.tar.gz)
| [GigaSpeech](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/gigaspeech/20210728_u2pp_conformer_libtorch.tar.gz)
| [LibriSpeech](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/librispeech/20210610_u2pp_conformer_libtorch.tar.gz)
| [Multi-CN](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/multi_cn/20210815_unified_conformer_libtorch.tar.gz)


Or you can train your own model using WeNet training pipeline on your data.

When your model is ready, put `final.zip` and `units.txt` into model (`WenetDemo/WenetDemo/model`) folder.

Open WenetDemo.xcodeproj with Xcode, build and run on iOS device.