# WeNet On-device ASR iOS Demo ## Build application from source code ### 1) Generate cmake project, install LibTorch pod and build static libraries ``` cd runtime/ios/build cmake .. -G Xcode -DTORCH=ON -DONNX=OFF -DIOS=ON -DGRAPH_TOOLS=OFF -DBUILD_TESTING=OFF -DCMAKE_TOOLCHAIN_FILE=../toolchains/ios.toolchain.cmake -DPLATFORM=OS64 -DENABLE_BITCODE=FALSE pod install # Build debug version cmake --build . --config Debug # Build release version cmake --build . --config Release ``` ### 2) Build and run iOS application You can use our pretrained model (click the following link to download): [AISHELL-1](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/aishell/20210601_u2%2B%2B_conformer_libtorch.tar.gz) | [AISHELL-2](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/aishell2/20210618_u2pp_conformer_libtorch.tar.gz) | [GigaSpeech](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/gigaspeech/20210728_u2pp_conformer_libtorch.tar.gz) | [LibriSpeech](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/librispeech/20210610_u2pp_conformer_libtorch.tar.gz) | [Multi-CN](https://wenet-1256283475.cos.ap-shanghai.myqcloud.com/models/multi_cn/20210815_unified_conformer_libtorch.tar.gz) Or you can train your own model using WeNet training pipeline on your data. When your model is ready, put `final.zip` and `units.txt` into model (`WenetDemo/WenetDemo/model`) folder. Open WenetDemo.xcodeproj with Xcode, build and run on iOS device.