run.sh 8.47 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#!/bin/bash

. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3"
stage=4 # start from 0 if you need to start from data preparation
stop_stage=4

# The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl
# communication. More details can be found in
# https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
# export NCCL_SOCKET_IFNAME=ens4f1
# The num of nodes or machines used for multi-machine training
# Default 1 for single machine/node
# NFS will be needed if you want run multi-machine training
num_nodes=1
# The rank of each node or machine, range from 0 to num_nodes -1
# The first node/machine sets node_rank 0, the second one sets node_rank 1
# the third one set node_rank 2, and so on. Default 0
node_rank=0

nj=16
feat_dir=raw_wav

data_type=raw
num_utts_per_shard=1000
prefetch=100

train_set=train_nodev
dev_set=train_dev

# Optional train_config
# 1. conf/train_transformer.yaml: Standard transformer
# 2. conf/train_conformer.yaml: Standard conformer
# 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer
# 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer
train_config=conf/train_conformer.yaml
# English modeling unit
# Optional 1. bpe 2. char
en_modeling_unit=bpe
dict=data/dict_$en_modeling_unit/lang_char.txt
cmvn=true
debug=false
num_workers=2
dir=exp/conformer
checkpoint=

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=30
decode_modes="ctc_greedy_search ctc_prefix_beam_search
              attention attention_rescoring"

. tools/parse_options.sh || exit 1;

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
  # Data preparation
  local/hkust_data_prep.sh /mnt/cfs/database/hkust/LDC2005S15/ \
    /mnt/cfs/database/hkust/LDC2005T32/ || exit 1;
fi


if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  # For wav feature, just copy the data. Fbank extraction is done in training
  mkdir -p ${feat_dir}_${en_modeling_unit}
  for x in ${train_set} ${dev_set}; do
    cp -r data/$x ${feat_dir}_${en_modeling_unit}
  done

  cp -r data/dev ${feat_dir}_${en_modeling_unit}/test

  tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
    --in_scp data/${train_set}/wav.scp \
    --out_cmvn ${feat_dir}_${en_modeling_unit}/$train_set/global_cmvn

fi

# This bpe model is trained on librispeech training data set.
bpecode=conf/train_960_unigram5000.model
trans_type_ops=
bpe_ops=
if [ $en_modeling_unit = "bpe" ]; then
  trans_type_ops="--trans_type cn_char_en_bpe"
  bpe_ops="--bpecode ${bpecode}"
fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  # Make train dict
  echo "Make a dictionary"
  mkdir -p $(dirname $dict)
  echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
  echo "<unk> 1" >> ${dict} # <unk> must be 1

  paste -d " " \
    <(cut -f 1 -d" " ${feat_dir}_${en_modeling_unit}/${train_set}/text) \
    <(cut -f 2- -d" " ${feat_dir}_${en_modeling_unit}/${train_set}/text \
    | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' \
    | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " " ) \
    > ${feat_dir}_${en_modeling_unit}/${train_set}/text4dict
  sed -i 's/\xEF\xBB\xBF//' \
    ${feat_dir}_${en_modeling_unit}/${train_set}/text4dict

  tools/text2token.py -s 1 -n 1 -m ${bpecode} \
    ${feat_dir}_${en_modeling_unit}/${train_set}/text4dict ${trans_type_ops} \
    | cut -f 2- -d" " | tr " " "\n" \
    | sort | uniq | grep -a -v -e '^\s*$' \
    | grep -v '·' | grep -v '“' | grep -v "”" | grep -v "\[" | grep -v "\]" \
    | grep -v "…" \
    | awk '{print $0 " " NR+1}' >> ${dict}

  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict # <eos>
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  # Prepare wenet required data
  echo "Prepare data, prepare required format"
  for x in ${dev_set} ${train_set} test; do
    if [ $data_type == "shard" ]; then
      tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \
        --num_threads 16 ${feat_dir}_${en_modeling_unit}/$x/wav.scp \
        ${feat_dir}_${en_modeling_unit}/$x/text \
        $(realpath ${feat_dir}_${en_modeling_unit}/$x/shards) \
        ${feat_dir}_${en_modeling_unit}/$x/data.list
    else
      tools/make_raw_list.py ${feat_dir}_${en_modeling_unit}/$x/wav.scp \
      ${feat_dir}_${en_modeling_unit}/$x/text \
      ${feat_dir}_${en_modeling_unit}/$x/data.list
    fi
  done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  # Training
  mkdir -p $dir
  INIT_FILE=$dir/ddp_init
  # You had better rm it manually before you start run.sh on first node.
  # rm -f $INIT_FILE # delete old one before starting
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="gloo"
  # The total number of processes/gpus, so that the master knows
  # how many workers to wait for.
  # More details about ddp can be found in
  # https://pytorch.org/tutorials/intermediate/dist_tuto.html
  world_size=`expr $num_gpus \* $num_nodes`
  echo "total gpus is: $world_size"
  cmvn_opts=
  $cmvn && cp ${feat_dir}_${en_modeling_unit}/$train_set/global_cmvn $dir
  $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"
  # train.py will write $train_config to $dir/train.yaml with model input
  # and output dimension, train.yaml will be used for inference or model
  # export later
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`

    python wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type $data_type \
      --symbol_table $dict \
      --prefetch $prefetch \
      --train_data ${feat_dir}_${en_modeling_unit}/$train_set/data.list \
      --cv_data ${feat_dir}_${en_modeling_unit}/$dev_set/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $world_size \
      --ddp.rank $rank \
      --ddp.dist_backend $dist_backend \
      --num_workers 1 \
      $cmvn_opts \
      --pin_memory \
      --bpe_model ${bpecode}
  } &
  done
  wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  # Test model, please specify the model you want to test by --checkpoint
  if [ ${average_checkpoint} == true ]; then
    decode_checkpoint=$dir/avg_${average_num}.pt
    echo "do model average and final checkpoint is $decode_checkpoint"
    python wenet/bin/average_model.py \
      --dst_model $decode_checkpoint \
      --src_path $dir  \
      --num ${average_num} \
      --val_best
  fi
  # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
  # -1 for full chunk
  decoding_chunk_size=-1
  ctc_weight=0.5
  idx=0
  for mode in ${decode_modes}; do
  {
    test_dir="$dir/"`
      `"test_${mode}${decoding_chunk_size:+_chunk$decoding_chunk_size}/test"
    mkdir -p $test_dir
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1])
    python wenet/bin/recognize.py --gpu $gpu_id \
      --mode $mode \
      --config $dir/train.yaml \
      --data_type $data_type \
      --test_data ${feat_dir}_${en_modeling_unit}/test/data.list \
      --checkpoint $decode_checkpoint \
      --beam_size 10 \
      --batch_size 1 \
      --penalty 0.0 \
      --dict $dict \
      --ctc_weight $ctc_weight \
      --result_file $test_dir/text_${en_modeling_unit} \
      ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
    if [ $en_modeling_unit == "bpe" ]; then
      tools/spm_decode --model=${bpecode} --input_format=piece \
      < $test_dir/text_${en_modeling_unit} | sed -e "s/▁/ /g" > $test_dir/text
    else
      cat $test_dir/text_${en_modeling_unit} \
      | sed -e "s/▁/ /g" > $test_dir/text
    fi
    # Cer used to be consistent with kaldi & espnet
    python tools/compute-cer.py --char=1 --v=1 \
      ${feat_dir}_${en_modeling_unit}/test/text $test_dir/text > $test_dir/wer
  } &
  ((idx+=1))
  done
  wait
fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  # Export the best model you want
  python wenet/bin/export_jit.py \
    --config $dir/train.yaml \
    --checkpoint $dir/avg_${average_num}.pt \
    --output_file $dir/final.zip \
    --output_quant_file $dir/final_quant.zip
fi