#!/bin/bash . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3" stage=4 # start from 0 if you need to start from data preparation stop_stage=4 # The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl # communication. More details can be found in # https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html # export NCCL_SOCKET_IFNAME=ens4f1 # The num of nodes or machines used for multi-machine training # Default 1 for single machine/node # NFS will be needed if you want run multi-machine training num_nodes=1 # The rank of each node or machine, range from 0 to num_nodes -1 # The first node/machine sets node_rank 0, the second one sets node_rank 1 # the third one set node_rank 2, and so on. Default 0 node_rank=0 nj=16 feat_dir=raw_wav data_type=raw num_utts_per_shard=1000 prefetch=100 train_set=train_nodev dev_set=train_dev # Optional train_config # 1. conf/train_transformer.yaml: Standard transformer # 2. conf/train_conformer.yaml: Standard conformer # 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer # 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer train_config=conf/train_conformer.yaml # English modeling unit # Optional 1. bpe 2. char en_modeling_unit=bpe dict=data/dict_$en_modeling_unit/lang_char.txt cmvn=true debug=false num_workers=2 dir=exp/conformer checkpoint= # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt average_num=30 decode_modes="ctc_greedy_search ctc_prefix_beam_search attention attention_rescoring" . tools/parse_options.sh || exit 1; if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # Data preparation local/hkust_data_prep.sh /mnt/cfs/database/hkust/LDC2005S15/ \ /mnt/cfs/database/hkust/LDC2005T32/ || exit 1; fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # For wav feature, just copy the data. Fbank extraction is done in training mkdir -p ${feat_dir}_${en_modeling_unit} for x in ${train_set} ${dev_set}; do cp -r data/$x ${feat_dir}_${en_modeling_unit} done cp -r data/dev ${feat_dir}_${en_modeling_unit}/test tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp data/${train_set}/wav.scp \ --out_cmvn ${feat_dir}_${en_modeling_unit}/$train_set/global_cmvn fi # This bpe model is trained on librispeech training data set. bpecode=conf/train_960_unigram5000.model trans_type_ops= bpe_ops= if [ $en_modeling_unit = "bpe" ]; then trans_type_ops="--trans_type cn_char_en_bpe" bpe_ops="--bpecode ${bpecode}" fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # Make train dict echo "Make a dictionary" mkdir -p $(dirname $dict) echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 paste -d " " \ <(cut -f 1 -d" " ${feat_dir}_${en_modeling_unit}/${train_set}/text) \ <(cut -f 2- -d" " ${feat_dir}_${en_modeling_unit}/${train_set}/text \ | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' \ | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " " ) \ > ${feat_dir}_${en_modeling_unit}/${train_set}/text4dict sed -i 's/\xEF\xBB\xBF//' \ ${feat_dir}_${en_modeling_unit}/${train_set}/text4dict tools/text2token.py -s 1 -n 1 -m ${bpecode} \ ${feat_dir}_${en_modeling_unit}/${train_set}/text4dict ${trans_type_ops} \ | cut -f 2- -d" " | tr " " "\n" \ | sort | uniq | grep -a -v -e '^\s*$' \ | grep -v '·' | grep -v '“' | grep -v "”" | grep -v "\[" | grep -v "\]" \ | grep -v "…" \ | awk '{print $0 " " NR+1}' >> ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # Prepare wenet required data echo "Prepare data, prepare required format" for x in ${dev_set} ${train_set} test; do if [ $data_type == "shard" ]; then tools/make_shard_list.py --num_utts_per_shard $num_utts_per_shard \ --num_threads 16 ${feat_dir}_${en_modeling_unit}/$x/wav.scp \ ${feat_dir}_${en_modeling_unit}/$x/text \ $(realpath ${feat_dir}_${en_modeling_unit}/$x/shards) \ ${feat_dir}_${en_modeling_unit}/$x/data.list else tools/make_raw_list.py ${feat_dir}_${en_modeling_unit}/$x/wav.scp \ ${feat_dir}_${en_modeling_unit}/$x/text \ ${feat_dir}_${en_modeling_unit}/$x/data.list fi done fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # Training mkdir -p $dir INIT_FILE=$dir/ddp_init # You had better rm it manually before you start run.sh on first node. # rm -f $INIT_FILE # delete old one before starting init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="gloo" # The total number of processes/gpus, so that the master knows # how many workers to wait for. # More details about ddp can be found in # https://pytorch.org/tutorials/intermediate/dist_tuto.html world_size=`expr $num_gpus \* $num_nodes` echo "total gpus is: $world_size" cmvn_opts= $cmvn && cp ${feat_dir}_${en_modeling_unit}/$train_set/global_cmvn $dir $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn" # train.py will write $train_config to $dir/train.yaml with model input # and output dimension, train.yaml will be used for inference or model # export later for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) # Rank of each gpu/process used for knowing whether it is # the master of a worker. rank=`expr $node_rank \* $num_gpus + $i` python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type $data_type \ --symbol_table $dict \ --prefetch $prefetch \ --train_data ${feat_dir}_${en_modeling_unit}/$train_set/data.list \ --cv_data ${feat_dir}_${en_modeling_unit}/$dev_set/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $world_size \ --ddp.rank $rank \ --ddp.dist_backend $dist_backend \ --num_workers 1 \ $cmvn_opts \ --pin_memory \ --bpe_model ${bpecode} } & done wait fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Test model, please specify the model you want to test by --checkpoint if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best fi # Specify decoding_chunk_size if it's a unified dynamic chunk trained model # -1 for full chunk decoding_chunk_size=-1 ctc_weight=0.5 idx=0 for mode in ${decode_modes}; do { test_dir="$dir/"` `"test_${mode}${decoding_chunk_size:+_chunk$decoding_chunk_size}/test" mkdir -p $test_dir gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1]) python wenet/bin/recognize.py --gpu $gpu_id \ --mode $mode \ --config $dir/train.yaml \ --data_type $data_type \ --test_data ${feat_dir}_${en_modeling_unit}/test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --ctc_weight $ctc_weight \ --result_file $test_dir/text_${en_modeling_unit} \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} if [ $en_modeling_unit == "bpe" ]; then tools/spm_decode --model=${bpecode} --input_format=piece \ < $test_dir/text_${en_modeling_unit} | sed -e "s/▁/ /g" > $test_dir/text else cat $test_dir/text_${en_modeling_unit} \ | sed -e "s/▁/ /g" > $test_dir/text fi # Cer used to be consistent with kaldi & espnet python tools/compute-cer.py --char=1 --v=1 \ ${feat_dir}_${en_modeling_unit}/test/text $test_dir/text > $test_dir/wer } & ((idx+=1)) done wait fi if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # Export the best model you want python wenet/bin/export_jit.py \ --config $dir/train.yaml \ --checkpoint $dir/avg_${average_num}.pt \ --output_file $dir/final.zip \ --output_quant_file $dir/final_quant.zip fi