run.sh 8.97 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.

. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"

# 1. xml split by sentences
# 2. wav split by xml.simp's guidance
# 3. generate "text" and "wav.scp" files as required by wenet
# 4. compute cmvn, better wav.len >= 0.1s, otherwise bug happens...
# 5. sentence piece's bpe vocabulary
# 6. make "data.list" files
# 7. train -> 50 epochs

stage=1 # train -> 50 epochs
stop_stage=8 #

# data
#data_url=www.openslr.org/resources/12
# TODO use your own data path
datadir=/workspace/asr/csj

# output wav data dir
wave_data=data # wave file path
# Optional train_config
train_config=conf/train_conformer.yaml
checkpoint=
cmvn=true # cmvn is for mean, variance, frame_number statistics
do_delta=false # not used...

dir=exp/sp_spec_aug # model's dir (output dir)

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
# maybe you can try to adjust it if you can not get close results as README.md
average_num=10
decode_modes="attention_rescoring ctc_greedy_search ctc_prefix_beam_search attention"

. tools/parse_options.sh || exit 1;

# bpemode (unigram or bpe)
nbpe=4096 # TODO -> you can change this value to 5000, 100000 and so on
bpemode=bpe #unigram # TODO -> you can use unigram and other methods

set -e # if any line's exex result is not true, bash stops
set -u # show the error line when stops (failed)
set -o pipefail # return value of the whole bash = final line executed's result

train_set=train
dev_set=dev
recog_set="test1 test2 test3"

### CSJ data is not free!
# buying URL: https://ccd.ninjal.ac.jp/csj/en/

### data preparing - split xml by sentences ###
if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
  ### I did not check espnet nor kaldi for the pre-processing,
  ### I developed my own ways. so, use at your own risks.
  echo "stage 1: Data preparation -> xml preprocessing "
  echo "  -> extract [start.time, end.time, text] from raw xml files"
  python ./csj_tools/wn.0.parse.py $datadir ${wave_data}
fi

in_wav_path=$datadir/WAV
xml_simp_path=${wave_data}/xml
#wav_split_path=${wave_data}/wav.2
wav_split_path=${wave_data}/wav
mkdir -p ${wav_split_path}

### data preparing - split wav by xml.simp's guidance ###
if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
  echo "stage 2: Data preparation -> wav preprocessing "
  echo "  -> split wav file by xml.simp's [start.time, end.time, text] format"
  # in addition, 2ch to 1ch!

  python ./csj_tools/wn.1.split_wav.py ${in_wav_path} ${xml_simp_path} ${wav_split_path}
fi

### data preparing - generate "text" and "wav.scp" files ###
if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
  echo "stage 3: prepare text and wav.scp for train/test1/test2/test3 from wav and xml folders"

  t1fn='list_files/test.set.1.list'
  t2fn='list_files/test.set.2.list'
  t3fn='list_files/test.set.3.list'

  outtrain=${wave_data}/train
  outt1=${wave_data}/test1
  outt2=${wave_data}/test2
  outt3=${wave_data}/test3

  mkdir -p $outtrain
  mkdir -p $outt1
  mkdir -p $outt2
  mkdir -p $outt3

  python ./csj_tools/wn.2.prep.text.py \
    ${xml_simp_path} ${wav_split_path} \
    $t1fn $t2fn $t3fn \
    $outtrain $outt1 $outt2 $outt3
fi

minsec=0.1

### compute static info: mean, variance, frame_num ###
if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
  echo "stage 4: Feature Generation"
  # TODO if failed, then please make sure your wav files are all >= 0.1s ...

  mkdir -p $wave_data/dev
  # merge total dev data
  for set in test1 test2 test3; do
    for f in `ls $wave_data/$set`; do
      cat $wave_data/$set/$f >> $wave_data/$dev_set/$f
    done
  done

  python ./csj_tools/wn.3.mincut.py $wave_data/$train_set/wav.scp $minsec

  tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
    --in_scp $wave_data/$train_set/wav.scp_$minsec \
    --out_cmvn $wave_data/$train_set/global_cmvn
fi

### use sentence piece to construct subword vocabulary ###
dict=$wave_data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt
bpemodel=$wave_data/lang_char/${train_set}_${bpemode}${nbpe}
echo "dictionary: ${dict}"
if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
  ### Task dependent. You have to check non-linguistic symbols used in the corpus.
  echo "stage 5: Dictionary and Json Data Preparation"
  mkdir -p data/lang_char/

  echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
  echo "<unk> 1" >> ${dict} # <unk> must be 1

  # we borrowed these code and scripts which are related bpe from ESPnet.
  cut -f 2- -d" " $wave_data/${train_set}/text > $wave_data/lang_char/input.txt
  tools/spm_train \
    --input=$wave_data/lang_char/input.txt \
    --vocab_size=${nbpe} \
    --model_type=${bpemode} \
    --model_prefix=${bpemodel} \
    --input_sentence_size=100000000

  tools/spm_encode \
    --model=${bpemodel}.model \
    --output_format=piece < $wave_data/lang_char/input.txt | \
    tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict}
  num_token=$(cat $dict | wc -l)
  echo "<sos/eos> $num_token" >> $dict # <eos>
  wc -l ${dict}
fi


if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
  # Prepare wenet required data
  echo "Prepare data, prepare required format"
  for x in $train_set ; do
    python csj_tools/wn.4.make_raw_list.py $wave_data/$x/wav.scp_$minsec $wave_data/$x/text \
        $wave_data/$x/data.list
  done
  for x in $dev_set ${recog_set} ; do
    python csj_tools/wn.4.make_raw_list.py $wave_data/$x/wav.scp $wave_data/$x/text \
        $wave_data/$x/data.list
  done
fi

### Training! ###

if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
  # Training
  mkdir -p $dir
  INIT_FILE=$dir/ddp_init
  rm -f $INIT_FILE # delete old one before starting
  init_method=file://$(readlink -f $INIT_FILE)
  echo "$0: init method is $init_method"
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  # Use "nccl" if it works, otherwise use "gloo"
  dist_backend="gloo"
  cmvn_opts=
  $cmvn && cmvn_opts="--cmvn $wave_data/${train_set}/global_cmvn"
  # train.py will write $train_config to $dir/train.yaml with model input
  # and output dimension, train.yaml will be used for inference or model
  # export later
  for ((i = 0; i < $num_gpus; ++i)); do
  {
    gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    python wenet/bin/train.py --gpu $gpu_id \
      --config $train_config \
      --data_type raw \
      --symbol_table $dict \
      --train_data $wave_data/$train_set/data.list \
      --cv_data $wave_data/$dev_set/data.list \
      ${checkpoint:+--checkpoint $checkpoint} \
      --model_dir $dir \
      --ddp.init_method $init_method \
      --ddp.world_size $num_gpus \
      --ddp.rank $i \
      --ddp.dist_backend $dist_backend \
      --num_workers 1 \
      $cmvn_opts \
      --pin_memory
  } &
  done
  wait
fi

### test model ###

if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then
  # Test model, please specify the model you want to test by --checkpoint
  cmvn_opts=
  $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn"
  mkdir -p $dir/test
  if [ ${average_checkpoint} == true ]; then
    decode_checkpoint=$dir/avg_${average_num}.pt
    echo "do model average and final checkpoint is $decode_checkpoint"
    python wenet/bin/average_model.py \
      --dst_model $decode_checkpoint \
      --src_path $dir  \
      --num ${average_num} \
      --val_best
  fi
  # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
  # -1 for full chunk
  decoding_chunk_size=-1
  ctc_weight=0.5
  # Polling GPU id begin with index 0
  num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
  idx=0
  for test in $recog_set; do
    for mode in ${decode_modes}; do
    {
      {
        test_dir=$dir/${test}_${mode}
        mkdir -p $test_dir
        gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1])
        python wenet/bin/recognize.py --gpu $gpu_id \
          --mode $mode \
          --config $dir/train.yaml \
          --data_type raw \
          --test_data $wave_data/$test/data.list \
          --checkpoint $decode_checkpoint \
          --beam_size 10 \
          --batch_size 1 \
          --penalty 0.0 \
          --dict $dict \
          --result_file $test_dir/text_bpe \
          --ctc_weight $ctc_weight \
          ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}

        cut -f2- -d " " $test_dir/text_bpe > $test_dir/text_bpe_value_tmp
        cut -f1 -d " " $test_dir/text_bpe > $test_dir/text_bpe_key_tmp
        tools/spm_decode --model=${bpemodel}.model --input_format=piece \
          < $test_dir/text_bpe_value_tmp | sed -e "s/▁/ /g" > $test_dir/text_value_tmp
        paste -d " " $test_dir/text_bpe_key_tmp $test_dir/text_value_tmp > $test_dir/text

        python tools/compute-wer.py --char=1 --v=1 \
          $wave_data/$test/text $test_dir/text > $test_dir/wer
      } &

      ((idx+=1))
      if [ $idx -eq $num_gpus ]; then
        idx=0
      fi
    }
    done
  done
  wait
fi