#!/bin/bash # Copyright 2019 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" # 1. xml split by sentences # 2. wav split by xml.simp's guidance # 3. generate "text" and "wav.scp" files as required by wenet # 4. compute cmvn, better wav.len >= 0.1s, otherwise bug happens... # 5. sentence piece's bpe vocabulary # 6. make "data.list" files # 7. train -> 50 epochs stage=1 # train -> 50 epochs stop_stage=8 # # data #data_url=www.openslr.org/resources/12 # TODO use your own data path datadir=/workspace/asr/csj # output wav data dir wave_data=data # wave file path # Optional train_config train_config=conf/train_conformer.yaml checkpoint= cmvn=true # cmvn is for mean, variance, frame_number statistics do_delta=false # not used... dir=exp/sp_spec_aug # model's dir (output dir) # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt # maybe you can try to adjust it if you can not get close results as README.md average_num=10 decode_modes="attention_rescoring ctc_greedy_search ctc_prefix_beam_search attention" . tools/parse_options.sh || exit 1; # bpemode (unigram or bpe) nbpe=4096 # TODO -> you can change this value to 5000, 100000 and so on bpemode=bpe #unigram # TODO -> you can use unigram and other methods set -e # if any line's exex result is not true, bash stops set -u # show the error line when stops (failed) set -o pipefail # return value of the whole bash = final line executed's result train_set=train dev_set=dev recog_set="test1 test2 test3" ### CSJ data is not free! # buying URL: https://ccd.ninjal.ac.jp/csj/en/ ### data preparing - split xml by sentences ### if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then ### I did not check espnet nor kaldi for the pre-processing, ### I developed my own ways. so, use at your own risks. echo "stage 1: Data preparation -> xml preprocessing " echo " -> extract [start.time, end.time, text] from raw xml files" python ./csj_tools/wn.0.parse.py $datadir ${wave_data} fi in_wav_path=$datadir/WAV xml_simp_path=${wave_data}/xml #wav_split_path=${wave_data}/wav.2 wav_split_path=${wave_data}/wav mkdir -p ${wav_split_path} ### data preparing - split wav by xml.simp's guidance ### if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then echo "stage 2: Data preparation -> wav preprocessing " echo " -> split wav file by xml.simp's [start.time, end.time, text] format" # in addition, 2ch to 1ch! python ./csj_tools/wn.1.split_wav.py ${in_wav_path} ${xml_simp_path} ${wav_split_path} fi ### data preparing - generate "text" and "wav.scp" files ### if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then echo "stage 3: prepare text and wav.scp for train/test1/test2/test3 from wav and xml folders" t1fn='list_files/test.set.1.list' t2fn='list_files/test.set.2.list' t3fn='list_files/test.set.3.list' outtrain=${wave_data}/train outt1=${wave_data}/test1 outt2=${wave_data}/test2 outt3=${wave_data}/test3 mkdir -p $outtrain mkdir -p $outt1 mkdir -p $outt2 mkdir -p $outt3 python ./csj_tools/wn.2.prep.text.py \ ${xml_simp_path} ${wav_split_path} \ $t1fn $t2fn $t3fn \ $outtrain $outt1 $outt2 $outt3 fi minsec=0.1 ### compute static info: mean, variance, frame_num ### if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then echo "stage 4: Feature Generation" # TODO if failed, then please make sure your wav files are all >= 0.1s ... mkdir -p $wave_data/dev # merge total dev data for set in test1 test2 test3; do for f in `ls $wave_data/$set`; do cat $wave_data/$set/$f >> $wave_data/$dev_set/$f done done python ./csj_tools/wn.3.mincut.py $wave_data/$train_set/wav.scp $minsec tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp $wave_data/$train_set/wav.scp_$minsec \ --out_cmvn $wave_data/$train_set/global_cmvn fi ### use sentence piece to construct subword vocabulary ### dict=$wave_data/lang_char/${train_set}_${bpemode}${nbpe}_units.txt bpemodel=$wave_data/lang_char/${train_set}_${bpemode}${nbpe} echo "dictionary: ${dict}" if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then ### Task dependent. You have to check non-linguistic symbols used in the corpus. echo "stage 5: Dictionary and Json Data Preparation" mkdir -p data/lang_char/ echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 # we borrowed these code and scripts which are related bpe from ESPnet. cut -f 2- -d" " $wave_data/${train_set}/text > $wave_data/lang_char/input.txt tools/spm_train \ --input=$wave_data/lang_char/input.txt \ --vocab_size=${nbpe} \ --model_type=${bpemode} \ --model_prefix=${bpemodel} \ --input_sentence_size=100000000 tools/spm_encode \ --model=${bpemodel}.model \ --output_format=piece < $wave_data/lang_char/input.txt | \ tr ' ' '\n' | sort | uniq | awk '{print $0 " " NR+1}' >> ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # wc -l ${dict} fi if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # Prepare wenet required data echo "Prepare data, prepare required format" for x in $train_set ; do python csj_tools/wn.4.make_raw_list.py $wave_data/$x/wav.scp_$minsec $wave_data/$x/text \ $wave_data/$x/data.list done for x in $dev_set ${recog_set} ; do python csj_tools/wn.4.make_raw_list.py $wave_data/$x/wav.scp $wave_data/$x/text \ $wave_data/$x/data.list done fi ### Training! ### if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then # Training mkdir -p $dir INIT_FILE=$dir/ddp_init rm -f $INIT_FILE # delete old one before starting init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="gloo" cmvn_opts= $cmvn && cmvn_opts="--cmvn $wave_data/${train_set}/global_cmvn" # train.py will write $train_config to $dir/train.yaml with model input # and output dimension, train.yaml will be used for inference or model # export later for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type raw \ --symbol_table $dict \ --train_data $wave_data/$train_set/data.list \ --cv_data $wave_data/$dev_set/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $num_gpus \ --ddp.rank $i \ --ddp.dist_backend $dist_backend \ --num_workers 1 \ $cmvn_opts \ --pin_memory } & done wait fi ### test model ### if [ ${stage} -le 8 ] && [ ${stop_stage} -ge 8 ]; then # Test model, please specify the model you want to test by --checkpoint cmvn_opts= $cmvn && cmvn_opts="--cmvn data/${train_set}/global_cmvn" mkdir -p $dir/test if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best fi # Specify decoding_chunk_size if it's a unified dynamic chunk trained model # -1 for full chunk decoding_chunk_size=-1 ctc_weight=0.5 # Polling GPU id begin with index 0 num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') idx=0 for test in $recog_set; do for mode in ${decode_modes}; do { { test_dir=$dir/${test}_${mode} mkdir -p $test_dir gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$idx+1]) python wenet/bin/recognize.py --gpu $gpu_id \ --mode $mode \ --config $dir/train.yaml \ --data_type raw \ --test_data $wave_data/$test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --result_file $test_dir/text_bpe \ --ctc_weight $ctc_weight \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} cut -f2- -d " " $test_dir/text_bpe > $test_dir/text_bpe_value_tmp cut -f1 -d " " $test_dir/text_bpe > $test_dir/text_bpe_key_tmp tools/spm_decode --model=${bpemodel}.model --input_format=piece \ < $test_dir/text_bpe_value_tmp | sed -e "s/▁/ /g" > $test_dir/text_value_tmp paste -d " " $test_dir/text_bpe_key_tmp $test_dir/text_value_tmp > $test_dir/text python tools/compute-wer.py --char=1 --v=1 \ $wave_data/$test/text $test_dir/text > $test_dir/wer } & ((idx+=1)) if [ $idx -eq $num_gpus ]; then idx=0 fi } done done wait fi