run.sh 8.82 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.
. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7"
# The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl
# communication. More details can be found in
# https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html
# export NCCL_SOCKET_IFNAME=ens4f1
export NCCL_DEBUG=INFO
stage=0 # start from 0 if you need to start from data preparation
stop_stage=6
# The num of nodes or machines used for multi-machine training
# Default 1 for single machine/node
# NFS will be needed if you want run multi-machine training
num_nodes=1
# The rank of each node or machine, range from 0 to num_nodes -1
# The first node/machine sets node_rank 0, the second one sets node_rank 1
# the third one set node_rank 2, and so on. Default 0
node_rank=0

# modify this to your AISHELL-2 data path
# Note: the evaluation data (dev & test) is available at AISHELL.
# Please download it from http://aishell-eval.oss-cn-beijing.aliyuncs.com/TEST%26DEV%20DATA.zip
trn_set=/mnt/nfs/ptm1/open-data/AISHELL-2/iOS/data
dev_set=/mnt/nfs/ptm1/open-data/AISHELL-DEV-TEST-SET/iOS/dev
tst_set=/mnt/nfs/ptm1/open-data/AISHELL-DEV-TEST-SET/iOS/test

nj=16
dict=data/dict/lang_char.txt

train_set=train
# Optional train_config
# 1. conf/train_transformer.yaml: Standard transformer
# 2. conf/train_conformer.yaml: Standard conformer
# 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer
# 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer
train_config=conf/train_unified_transformer.yaml
cmvn=true
dir=exp/transformer
checkpoint=

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=30
decode_modes="ctc_greedy_search ctc_prefix_beam_search attention attention_rescoring"

. tools/parse_options.sh || exit 1;

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
    # Data preparation
    local/prepare_data.sh ${trn_set} data/local/${train_set} data/${train_set} || exit 1;
    local/prepare_data.sh ${dev_set} data/local/dev data/dev || exit 1;
    local/prepare_data.sh ${tst_set} data/local/test data/test || exit 1;
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
    # remove the space between the text labels for Mandarin dataset
    for x in ${train_set} dev test; do
        cp data/${x}/text data/${x}/text.org
        paste -d " " <(cut -f 1 data/${x}/text.org) <(cut -f 2- data/${x}/text.org \
             | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " ") \
            > data/${x}/text
        rm data/${x}/text.org
    done

    tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
        --in_scp data/${train_set}/wav.scp \
        --out_cmvn data/$train_set/global_cmvn

fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
    # Make train dict
    echo "Make a dictionary"
    mkdir -p $(dirname $dict)
    echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
    echo "<unk> 1" >> ${dict} # <unk> must be 1
    tools/text2token.py -s 1 -n 1 data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \
        | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict}
    num_token=$(cat $dict | wc -l)
    echo "<sos/eos> $num_token" >> $dict # <eos>
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
    # Prepare wenet required data
    echo "Prepare data, prepare required format"
    for x in dev test ${train_set}; do
        tools/make_raw_list.py data/$x/wav.scp data/$x/text data/$x/data.list
    done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
    # Training
    mkdir -p $dir
    INIT_FILE=$dir/ddp_init
    # You had better rm it manually before you start run.sh on first node.
    # rm -f $INIT_FILE # delete old one before starting
    init_method=file://$(readlink -f $INIT_FILE)
    echo "$0: init method is $init_method"
    # The number of gpus runing on each node/machine
    num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
    # Use "nccl" if it works, otherwise use "gloo"
    dist_backend="gloo"
    # The total number of processes/gpus, so that the master knows
    # how many workers to wait for.
    # More details about ddp can be found in
    # https://pytorch.org/tutorials/intermediate/dist_tuto.html
    world_size=`expr $num_gpus \* $num_nodes`
    echo "total gpus is: $world_size"
    cmvn_opts=
    $cmvn && cp data/${train_set}/global_cmvn $dir
    $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"
    # train.py will write $train_config to $dir/train.yaml with model input
    # and output dimension, train.yaml will be used for inference or model
    # export later
    for ((i = 0; i < $num_gpus; ++i)); do
    {
        gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`
    python wenet/bin/train.py --gpu $gpu_id \
            --config $train_config \
            --data_type raw \
            --symbol_table $dict \
            --train_data data/$train_set/data.list \
            --cv_data data/dev/data.list \
            ${checkpoint:+--checkpoint $checkpoint} \
            --model_dir $dir \
            --ddp.init_method $init_method \
            --ddp.world_size $world_size \
            --ddp.rank $rank \
            --ddp.dist_backend $dist_backend \
            --num_workers 2 \
            $cmvn_opts
    } &
    done
    wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
    # Test model, please specify the model you want to test by --checkpoint
    if [ ${average_checkpoint} == true ]; then
        decode_checkpoint=$dir/avg_${average_num}.pt
        echo "do model average and final checkpoint is $decode_checkpoint"
        python wenet/bin/average_model.py \
            --dst_model $decode_checkpoint \
            --src_path $dir  \
            --num ${average_num} \
            --val_best
    fi
    # Specify decoding_chunk_size if it's a unified dynamic chunk trained model
    # -1 for full chunk
    decoding_chunk_size=
    ctc_weight=0.5
    for mode in ${decode_modes}; do
    {
        test_dir=$dir/test_${mode}
        mkdir -p $test_dir
        python wenet/bin/recognize.py --gpu 0 \
            --mode $mode \
            --config $dir/train.yaml \
            --data_type raw \
            --test_data data/test/data.list \
            --checkpoint $decode_checkpoint \
            --beam_size 10 \
            --batch_size 1 \
            --penalty 0.0 \
            --dict $dict \
            --ctc_weight $ctc_weight \
            --result_file $test_dir/text \
            ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
         python tools/compute-wer.py --char=1 --v=1 \
            data/test/text $test_dir/text > $test_dir/wer
    } &
    done
    wait

fi

if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then
    # Export the best model you want
    python wenet/bin/export_jit.py \
        --config $dir/train.yaml \
        --checkpoint $dir/avg_${average_num}.pt \
        --output_file $dir/final.zip \
        --output_quant_file $dir/final_quant.zip
fi

# Optionally, you can add LM and test it with runtime.
if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then
  # 7.1 Prepare dict
  unit_file=$dict
  download_dir=data/local/DaCiDian
  git clone https://github.com/aishell-foundation/DaCiDian.git $download_dir
  mkdir -p data/local/dict
  cp $unit_file data/local/dict/units.txt
  tools/fst/prepare_dict.py $unit_file $download_dir/word_to_pinyin.txt \
      data/local/dict/lexicon.txt
  # 7.2 Segment text
  pip install jieba
  lm=data/local/lm
  mkdir -p $lm
  awk '{print $1}' data/local/dict/lexicon.txt | \
      awk '{print $1,99}' > $lm/word_seg_vocab.txt
  python local/word_segmentation.py $lm/word_seg_vocab.txt \
      data/train/text > $lm/text
  # 7.3 Train lm
  local/train_lms.sh
  # 7.4 Build decoding TLG
  tools/fst/compile_lexicon_token_fst.sh \
      data/local/dict data/local/tmp data/local/lang
  tools/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1;
  # 7.5 Decoding with runtime
  # reverse_weight only works for u2++ model and only left to right decoder is used when it is set to 0.0.
  reverse_weight=0.0
  chunk_size=-1
  ./tools/decode.sh --nj 16 --chunk_size $chunk_size\
      --beam 15.0 --lattice_beam 7.5 --max_active 7000 --blank_skip_thresh 0.98 \
      --ctc_weight 0.3 --rescoring_weight 1.0 --reverse_weight $reverse_weight\
      --fst_path data/lang_test/TLG.fst \
      --dict_path data/lang_test/words.txt \
      data/test/wav.scp data/test/text $dir/final.zip data/lang_test/units.txt \
      $dir/lm_with_runtime
  # See $dir/lm_with_runtime for wer
  tail $dir/lm_with_runtime/wer
fi