#!/bin/bash # Copyright 2019 Mobvoi Inc. All Rights Reserved. . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3,4,5,6,7" # The NCCL_SOCKET_IFNAME variable specifies which IP interface to use for nccl # communication. More details can be found in # https://docs.nvidia.com/deeplearning/nccl/user-guide/docs/env.html # export NCCL_SOCKET_IFNAME=ens4f1 export NCCL_DEBUG=INFO stage=0 # start from 0 if you need to start from data preparation stop_stage=6 # The num of nodes or machines used for multi-machine training # Default 1 for single machine/node # NFS will be needed if you want run multi-machine training num_nodes=1 # The rank of each node or machine, range from 0 to num_nodes -1 # The first node/machine sets node_rank 0, the second one sets node_rank 1 # the third one set node_rank 2, and so on. Default 0 node_rank=0 # modify this to your AISHELL-2 data path # Note: the evaluation data (dev & test) is available at AISHELL. # Please download it from http://aishell-eval.oss-cn-beijing.aliyuncs.com/TEST%26DEV%20DATA.zip trn_set=/mnt/nfs/ptm1/open-data/AISHELL-2/iOS/data dev_set=/mnt/nfs/ptm1/open-data/AISHELL-DEV-TEST-SET/iOS/dev tst_set=/mnt/nfs/ptm1/open-data/AISHELL-DEV-TEST-SET/iOS/test nj=16 dict=data/dict/lang_char.txt train_set=train # Optional train_config # 1. conf/train_transformer.yaml: Standard transformer # 2. conf/train_conformer.yaml: Standard conformer # 3. conf/train_unified_conformer.yaml: Unified dynamic chunk causal conformer # 4. conf/train_unified_transformer.yaml: Unified dynamic chunk transformer train_config=conf/train_unified_transformer.yaml cmvn=true dir=exp/transformer checkpoint= # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt average_num=30 decode_modes="ctc_greedy_search ctc_prefix_beam_search attention attention_rescoring" . tools/parse_options.sh || exit 1; if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # Data preparation local/prepare_data.sh ${trn_set} data/local/${train_set} data/${train_set} || exit 1; local/prepare_data.sh ${dev_set} data/local/dev data/dev || exit 1; local/prepare_data.sh ${tst_set} data/local/test data/test || exit 1; fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # remove the space between the text labels for Mandarin dataset for x in ${train_set} dev test; do cp data/${x}/text data/${x}/text.org paste -d " " <(cut -f 1 data/${x}/text.org) <(cut -f 2- data/${x}/text.org \ | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " ") \ > data/${x}/text rm data/${x}/text.org done tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp data/${train_set}/wav.scp \ --out_cmvn data/$train_set/global_cmvn fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # Make train dict echo "Make a dictionary" mkdir -p $(dirname $dict) echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 tools/text2token.py -s 1 -n 1 data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \ | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # Prepare wenet required data echo "Prepare data, prepare required format" for x in dev test ${train_set}; do tools/make_raw_list.py data/$x/wav.scp data/$x/text data/$x/data.list done fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # Training mkdir -p $dir INIT_FILE=$dir/ddp_init # You had better rm it manually before you start run.sh on first node. # rm -f $INIT_FILE # delete old one before starting init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" # The number of gpus runing on each node/machine num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="gloo" # The total number of processes/gpus, so that the master knows # how many workers to wait for. # More details about ddp can be found in # https://pytorch.org/tutorials/intermediate/dist_tuto.html world_size=`expr $num_gpus \* $num_nodes` echo "total gpus is: $world_size" cmvn_opts= $cmvn && cp data/${train_set}/global_cmvn $dir $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn" # train.py will write $train_config to $dir/train.yaml with model input # and output dimension, train.yaml will be used for inference or model # export later for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) # Rank of each gpu/process used for knowing whether it is # the master of a worker. rank=`expr $node_rank \* $num_gpus + $i` python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type raw \ --symbol_table $dict \ --train_data data/$train_set/data.list \ --cv_data data/dev/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $world_size \ --ddp.rank $rank \ --ddp.dist_backend $dist_backend \ --num_workers 2 \ $cmvn_opts } & done wait fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Test model, please specify the model you want to test by --checkpoint if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best fi # Specify decoding_chunk_size if it's a unified dynamic chunk trained model # -1 for full chunk decoding_chunk_size= ctc_weight=0.5 for mode in ${decode_modes}; do { test_dir=$dir/test_${mode} mkdir -p $test_dir python wenet/bin/recognize.py --gpu 0 \ --mode $mode \ --config $dir/train.yaml \ --data_type raw \ --test_data data/test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --ctc_weight $ctc_weight \ --result_file $test_dir/text \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} python tools/compute-wer.py --char=1 --v=1 \ data/test/text $test_dir/text > $test_dir/wer } & done wait fi if [ ${stage} -le 6 ] && [ ${stop_stage} -ge 6 ]; then # Export the best model you want python wenet/bin/export_jit.py \ --config $dir/train.yaml \ --checkpoint $dir/avg_${average_num}.pt \ --output_file $dir/final.zip \ --output_quant_file $dir/final_quant.zip fi # Optionally, you can add LM and test it with runtime. if [ ${stage} -le 7 ] && [ ${stop_stage} -ge 7 ]; then # 7.1 Prepare dict unit_file=$dict download_dir=data/local/DaCiDian git clone https://github.com/aishell-foundation/DaCiDian.git $download_dir mkdir -p data/local/dict cp $unit_file data/local/dict/units.txt tools/fst/prepare_dict.py $unit_file $download_dir/word_to_pinyin.txt \ data/local/dict/lexicon.txt # 7.2 Segment text pip install jieba lm=data/local/lm mkdir -p $lm awk '{print $1}' data/local/dict/lexicon.txt | \ awk '{print $1,99}' > $lm/word_seg_vocab.txt python local/word_segmentation.py $lm/word_seg_vocab.txt \ data/train/text > $lm/text # 7.3 Train lm local/train_lms.sh # 7.4 Build decoding TLG tools/fst/compile_lexicon_token_fst.sh \ data/local/dict data/local/tmp data/local/lang tools/fst/make_tlg.sh data/local/lm data/local/lang data/lang_test || exit 1; # 7.5 Decoding with runtime # reverse_weight only works for u2++ model and only left to right decoder is used when it is set to 0.0. reverse_weight=0.0 chunk_size=-1 ./tools/decode.sh --nj 16 --chunk_size $chunk_size\ --beam 15.0 --lattice_beam 7.5 --max_active 7000 --blank_skip_thresh 0.98 \ --ctc_weight 0.3 --rescoring_weight 1.0 --reverse_weight $reverse_weight\ --fst_path data/lang_test/TLG.fst \ --dict_path data/lang_test/words.txt \ data/test/wav.scp data/test/text $dir/final.zip data/lang_test/units.txt \ $dir/lm_with_runtime # See $dir/lm_with_runtime for wer tail $dir/lm_with_runtime/wer fi