run.sh 7.08 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
#!/bin/bash

# Copyright 2019 Mobvoi Inc. All Rights Reserved.
#           2022 burkliu(boji123@aliyun.com)

. ./path.sh || exit 1;

# Use this to control how many gpu you use, It's 1-gpu training if you specify
# just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch
export CUDA_VISIBLE_DEVICES="0,1,2,3"

stage=0 # start from 0 if you need to start from data preparation
stop_stage=5
# The num of nodes or machines used for multi-machine training
# Default 1 for single machine/node
# NFS will be needed if you want run multi-machine training
num_nodes=1
# The rank of each node or machine, range from 0 to num_nodes -1
# The first node/machine sets node_rank 0, the second one sets node_rank 1
# the third one set node_rank 2, and so on. Default 0
node_rank=0

# modify this to your AISHELL-2 data path
# Note: the evaluation data (dev & test) is available at AISHELL.
# Please download it from http://aishell-eval.oss-cn-beijing.aliyuncs.com/TEST%26DEV%20DATA.zip
train_set=/cfs/share/corpus/aishell-2/AISHELL-2/iOS/data
dev_set=/cfs/share/corpus/aishell-2/AISHELL-DEV-TEST-SET/iOS/dev
test_set=/cfs/share/corpus/aishell-2/AISHELL-DEV-TEST-SET/iOS/test

nj=16
dict=data/dict/lang_char.txt

train_set=train
train_config=conf/conformer_u2pp_rnnt.yaml
cmvn=true
dir=exp/`basename ${train_config%.*}`
checkpoint=

# use average_checkpoint will get better result
average_checkpoint=true
decode_checkpoint=$dir/final.pt
average_num=30
decode_modes="rnnt_beam_search"

# Specify decoding_chunk_size if it's a unified dynamic chunk trained model
# -1 for full chunk
decoding_chunk_size=-1
# only used in rescore mode for weighting different scores
rescore_ctc_weight=0.5
rescore_transducer_weight=0.5
rescore_attn_weight=0.5
# only used in beam search, either pure beam search mode OR beam search inside rescoring
search_ctc_weight=0.3
search_transducer_weight=0.7

. tools/parse_options.sh || exit 1;

if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then
    # Data preparation
    local/prepare_data.sh ${train_set} data/local/${train_set} data/${train_set} || exit 1;
    local/prepare_data.sh ${dev_set} data/local/dev data/dev || exit 1;
    local/prepare_data.sh ${test_set} data/local/test data/test || exit 1;
fi

if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then
    # remove the space between the text labels for Mandarin dataset
    for x in ${train_set} dev test; do
        cp data/${x}/text data/${x}/text.org
        paste -d " " <(cut -f 1 data/${x}/text.org) <(cut -f 2- data/${x}/text.org \
             | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " ") \
            > data/${x}/text
        rm data/${x}/text.org
    done

    tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \
        --in_scp data/${train_set}/wav.scp \
        --out_cmvn data/$train_set/global_cmvn

fi

if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then
    # Make train dict
    echo "Make a dictionary"
    mkdir -p $(dirname $dict)
    echo "<blank> 0" > ${dict} # 0 will be used for "blank" in CTC
    echo "<unk> 1" >> ${dict} # <unk> must be 1
    tools/text2token.py -s 1 -n 1 data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \
        | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict}
    num_token=$(cat $dict | wc -l)
    echo "<sos/eos> $num_token" >> $dict # <eos>
fi

if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then
    # Prepare wenet required data
    echo "Prepare data, prepare required format"
    for x in dev test ${train_set}; do
        tools/make_raw_list.py data/$x/wav.scp data/$x/text data/$x/data.list
    done
fi

if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then
    # Training
    mkdir -p $dir
    INIT_FILE=$dir/ddp_init
    # You had better rm it manually before you start run.sh on first node.
    # rm -f $INIT_FILE # delete old one before starting
    init_method=file://$(readlink -f $INIT_FILE)
    echo "$0: init method is $init_method"
    # The number of gpus runing on each node/machine
    num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}')
    # Use "nccl" if it works, otherwise use "gloo"
    dist_backend="gloo"
    #dist_backend="nccl"
    # The total number of processes/gpus, so that the master knows
    # how many workers to wait for.
    # More details about ddp can be found in
    # https://pytorch.org/tutorials/intermediate/dist_tuto.html
    world_size=`expr $num_gpus \* $num_nodes`
    echo "total gpus is: $world_size"
    cmvn_opts=
    $cmvn && cp data/${train_set}/global_cmvn $dir
    $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn"
    # train.py will write $train_config to $dir/train.yaml with model input
    # and output dimension, train.yaml will be used for inference or model
    # export later
    for ((i = 0; i < $num_gpus; ++i)); do
    {
        gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1])
    # Rank of each gpu/process used for knowing whether it is
    # the master of a worker.
    rank=`expr $node_rank \* $num_gpus + $i`
    python wenet/bin/train.py --gpu $gpu_id \
            --config $train_config \
            --data_type raw \
            --symbol_table $dict \
            --train_data data/$train_set/data.list \
            --cv_data data/dev/data.list \
            ${checkpoint:+--checkpoint $checkpoint} \
            --model_dir $dir \
            --ddp.init_method $init_method \
            --ddp.world_size $world_size \
            --ddp.rank $rank \
            --ddp.dist_backend $dist_backend \
            --num_workers 4 \
            $cmvn_opts \
            2>&1 | tee -a $dir/train.log || exit 1;
    } &
    done
    wait
fi

if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then
    # Test model, please specify the model you want to test by --checkpoint
    if [ ${average_checkpoint} == true ]; then
        decode_checkpoint=$dir/avg_${average_num}.pt
        echo "do model average and final checkpoint is $decode_checkpoint"
        python wenet/bin/average_model.py \
            --dst_model $decode_checkpoint \
            --src_path $dir  \
            --num ${average_num} \
            --val_best \
            2>&1 | tee -a $dir/average.log || exit 1;
    fi

    for mode in ${decode_modes}; do
    {
        test_dir=$dir/test_${mode}_chunk_${decoding_chunk_size}
        mkdir -p $test_dir
        python wenet/bin/recognize.py --gpu 0 \
            --mode $mode \
            --config $dir/train.yaml \
            --data_type raw \
            --test_data data/test/data.list \
            --checkpoint $decode_checkpoint \
            --beam_size 10 \
            --batch_size 1 \
            --penalty 0.0 \
            --dict $dict \
            --ctc_weight $rescore_ctc_weight \
            --transducer_weight $rescore_transducer_weight \
            --attn_weight $rescore_attn_weight \
            --search_ctc_weight $search_ctc_weight \
            --search_transducer_weight $search_transducer_weight \
            --result_file $test_dir/text \
            ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size}
         python tools/compute-wer.py --char=1 --v=1 \
            data/test/text $test_dir/text > $test_dir/wer
    } &
    done
    wait
fi