#!/bin/bash # Copyright 2019 Mobvoi Inc. All Rights Reserved. # 2022 burkliu(boji123@aliyun.com) . ./path.sh || exit 1; # Use this to control how many gpu you use, It's 1-gpu training if you specify # just 1gpu, otherwise it's is multiple gpu training based on DDP in pytorch export CUDA_VISIBLE_DEVICES="0,1,2,3" stage=0 # start from 0 if you need to start from data preparation stop_stage=5 # The num of nodes or machines used for multi-machine training # Default 1 for single machine/node # NFS will be needed if you want run multi-machine training num_nodes=1 # The rank of each node or machine, range from 0 to num_nodes -1 # The first node/machine sets node_rank 0, the second one sets node_rank 1 # the third one set node_rank 2, and so on. Default 0 node_rank=0 # modify this to your AISHELL-2 data path # Note: the evaluation data (dev & test) is available at AISHELL. # Please download it from http://aishell-eval.oss-cn-beijing.aliyuncs.com/TEST%26DEV%20DATA.zip train_set=/cfs/share/corpus/aishell-2/AISHELL-2/iOS/data dev_set=/cfs/share/corpus/aishell-2/AISHELL-DEV-TEST-SET/iOS/dev test_set=/cfs/share/corpus/aishell-2/AISHELL-DEV-TEST-SET/iOS/test nj=16 dict=data/dict/lang_char.txt train_set=train train_config=conf/conformer_u2pp_rnnt.yaml cmvn=true dir=exp/`basename ${train_config%.*}` checkpoint= # use average_checkpoint will get better result average_checkpoint=true decode_checkpoint=$dir/final.pt average_num=30 decode_modes="rnnt_beam_search" # Specify decoding_chunk_size if it's a unified dynamic chunk trained model # -1 for full chunk decoding_chunk_size=-1 # only used in rescore mode for weighting different scores rescore_ctc_weight=0.5 rescore_transducer_weight=0.5 rescore_attn_weight=0.5 # only used in beam search, either pure beam search mode OR beam search inside rescoring search_ctc_weight=0.3 search_transducer_weight=0.7 . tools/parse_options.sh || exit 1; if [ ${stage} -le 0 ] && [ ${stop_stage} -ge 0 ]; then # Data preparation local/prepare_data.sh ${train_set} data/local/${train_set} data/${train_set} || exit 1; local/prepare_data.sh ${dev_set} data/local/dev data/dev || exit 1; local/prepare_data.sh ${test_set} data/local/test data/test || exit 1; fi if [ ${stage} -le 1 ] && [ ${stop_stage} -ge 1 ]; then # remove the space between the text labels for Mandarin dataset for x in ${train_set} dev test; do cp data/${x}/text data/${x}/text.org paste -d " " <(cut -f 1 data/${x}/text.org) <(cut -f 2- data/${x}/text.org \ | tr 'a-z' 'A-Z' | sed 's/\([A-Z]\) \([A-Z]\)/\1▁\2/g' | tr -d " ") \ > data/${x}/text rm data/${x}/text.org done tools/compute_cmvn_stats.py --num_workers 16 --train_config $train_config \ --in_scp data/${train_set}/wav.scp \ --out_cmvn data/$train_set/global_cmvn fi if [ ${stage} -le 2 ] && [ ${stop_stage} -ge 2 ]; then # Make train dict echo "Make a dictionary" mkdir -p $(dirname $dict) echo " 0" > ${dict} # 0 will be used for "blank" in CTC echo " 1" >> ${dict} # must be 1 tools/text2token.py -s 1 -n 1 data/${train_set}/text | cut -f 2- -d" " | tr " " "\n" \ | sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${dict} num_token=$(cat $dict | wc -l) echo " $num_token" >> $dict # fi if [ ${stage} -le 3 ] && [ ${stop_stage} -ge 3 ]; then # Prepare wenet required data echo "Prepare data, prepare required format" for x in dev test ${train_set}; do tools/make_raw_list.py data/$x/wav.scp data/$x/text data/$x/data.list done fi if [ ${stage} -le 4 ] && [ ${stop_stage} -ge 4 ]; then # Training mkdir -p $dir INIT_FILE=$dir/ddp_init # You had better rm it manually before you start run.sh on first node. # rm -f $INIT_FILE # delete old one before starting init_method=file://$(readlink -f $INIT_FILE) echo "$0: init method is $init_method" # The number of gpus runing on each node/machine num_gpus=$(echo $CUDA_VISIBLE_DEVICES | awk -F "," '{print NF}') # Use "nccl" if it works, otherwise use "gloo" dist_backend="gloo" #dist_backend="nccl" # The total number of processes/gpus, so that the master knows # how many workers to wait for. # More details about ddp can be found in # https://pytorch.org/tutorials/intermediate/dist_tuto.html world_size=`expr $num_gpus \* $num_nodes` echo "total gpus is: $world_size" cmvn_opts= $cmvn && cp data/${train_set}/global_cmvn $dir $cmvn && cmvn_opts="--cmvn ${dir}/global_cmvn" # train.py will write $train_config to $dir/train.yaml with model input # and output dimension, train.yaml will be used for inference or model # export later for ((i = 0; i < $num_gpus; ++i)); do { gpu_id=$(echo $CUDA_VISIBLE_DEVICES | cut -d',' -f$[$i+1]) # Rank of each gpu/process used for knowing whether it is # the master of a worker. rank=`expr $node_rank \* $num_gpus + $i` python wenet/bin/train.py --gpu $gpu_id \ --config $train_config \ --data_type raw \ --symbol_table $dict \ --train_data data/$train_set/data.list \ --cv_data data/dev/data.list \ ${checkpoint:+--checkpoint $checkpoint} \ --model_dir $dir \ --ddp.init_method $init_method \ --ddp.world_size $world_size \ --ddp.rank $rank \ --ddp.dist_backend $dist_backend \ --num_workers 4 \ $cmvn_opts \ 2>&1 | tee -a $dir/train.log || exit 1; } & done wait fi if [ ${stage} -le 5 ] && [ ${stop_stage} -ge 5 ]; then # Test model, please specify the model you want to test by --checkpoint if [ ${average_checkpoint} == true ]; then decode_checkpoint=$dir/avg_${average_num}.pt echo "do model average and final checkpoint is $decode_checkpoint" python wenet/bin/average_model.py \ --dst_model $decode_checkpoint \ --src_path $dir \ --num ${average_num} \ --val_best \ 2>&1 | tee -a $dir/average.log || exit 1; fi for mode in ${decode_modes}; do { test_dir=$dir/test_${mode}_chunk_${decoding_chunk_size} mkdir -p $test_dir python wenet/bin/recognize.py --gpu 0 \ --mode $mode \ --config $dir/train.yaml \ --data_type raw \ --test_data data/test/data.list \ --checkpoint $decode_checkpoint \ --beam_size 10 \ --batch_size 1 \ --penalty 0.0 \ --dict $dict \ --ctc_weight $rescore_ctc_weight \ --transducer_weight $rescore_transducer_weight \ --attn_weight $rescore_attn_weight \ --search_ctc_weight $search_ctc_weight \ --search_transducer_weight $search_transducer_weight \ --result_file $test_dir/text \ ${decoding_chunk_size:+--decoding_chunk_size $decoding_chunk_size} python tools/compute-wer.py --char=1 --v=1 \ data/test/text $test_dir/text > $test_dir/wer } & done wait fi