cli_video_demo.py 4.77 KB
Newer Older
wanglch's avatar
wanglch committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import io
import numpy as np
import torch
from decord import cpu, VideoReader, bridge
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import argparse

MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat"
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[
    0] >= 8 else torch.float16

parser = argparse.ArgumentParser(description="CogVLM2-Video CLI Demo")
parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0)
args = parser.parse_args()

if 'int4' in MODEL_PATH:
    args.quant = 4


def load_video(video_path, strategy='chat'):
    bridge.set_bridge('torch')
    with open(video_path, 'rb') as f:
        mp4_stream = f.read()
    num_frames = 24

    if mp4_stream is not None:
        decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0))
    else:
        decord_vr = VideoReader(video_path, ctx=cpu(0))
    frame_id_list = None
    total_frames = len(decord_vr)
    if strategy == 'base':
        clip_end_sec = 60
        clip_start_sec = 0
        start_frame = int(clip_start_sec * decord_vr.get_avg_fps())
        end_frame = min(total_frames,
                        int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames
        frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int)
    elif strategy == 'chat':
        timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames))
        timestamps = [i[0] for i in timestamps]
        max_second = round(max(timestamps)) + 1
        frame_id_list = []
        for second in range(max_second):
            closest_num = min(timestamps, key=lambda x: abs(x - second))
            index = timestamps.index(closest_num)
            frame_id_list.append(index)
            if len(frame_id_list) >= num_frames:
                break
    video_data = decord_vr.get_batch(frame_id_list)
    video_data = video_data.permute(3, 0, 1, 2)
    return video_data


tokenizer = AutoTokenizer.from_pretrained(
    MODEL_PATH,
    trust_remote_code=True,
    # padding_side="left"
)

if torch.cuda.is_available() and torch.cuda.get_device_properties(0).total_memory < 48 * 1024 ** 3 and not args.quant:
    print("GPU memory is less than 48GB. Please use cli_demo_multi_gpus.py or pass `--quant 4` or `--quant 8`.")
    exit()

# Load the model
if args.quant == 4:
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=TORCH_TYPE,
        ),
        low_cpu_mem_usage=True
    ).eval()
elif args.quant == 8:
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True,
        quantization_config=BitsAndBytesConfig(
            load_in_8bit=True,
            bnb_4bit_compute_dtype=TORCH_TYPE,
        ),
        low_cpu_mem_usage=True
    ).eval()
else:
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_PATH,
        torch_dtype=TORCH_TYPE,
        trust_remote_code=True
    ).eval().to(DEVICE)

while True:
    strategy = 'base' if 'cogvlm2-video-llama3-base' in MODEL_PATH else 'chat'
    print(f"using with {strategy} model")
    video_path = input("video path >>>>> ")
    if video_path == '':
        print('You did not enter video path, the following will be a plain text conversation.')
        video = None
    else:
        video = load_video(video_path, strategy=strategy)

    history = []
    while True:
        query = input("Human:")
        if query == "clear":
            break

        inputs = model.build_conversation_input_ids(
            tokenizer=tokenizer,
            query=query,
            images=[video],
            history=history,
            template_version=strategy
        )

        inputs = {
            'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
            'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
            'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
            'images': [[inputs['images'][0].to('cuda').to(TORCH_TYPE)]],
        }
        gen_kwargs = {
            "max_new_tokens": 2048,
            "pad_token_id": 128002,
            "top_k": 1,
            "do_sample": True,
            "top_p": 0.1,
            "temperature": 0.1,
        }
        with torch.no_grad():
            outputs = model.generate(**inputs, **gen_kwargs)
            outputs = outputs[:, inputs['input_ids'].shape[1]:]
            response = tokenizer.decode(outputs[0], skip_special_tokens=True)
            print("\nCogVLM2-Video:", response)
        history.append((query, response))