import io import numpy as np import torch from decord import cpu, VideoReader, bridge from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import argparse MODEL_PATH = "THUDM/cogvlm2-video-llama3-chat" DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[ 0] >= 8 else torch.float16 parser = argparse.ArgumentParser(description="CogVLM2-Video CLI Demo") parser.add_argument('--quant', type=int, choices=[4, 8], help='Enable 4-bit or 8-bit precision loading', default=0) args = parser.parse_args() if 'int4' in MODEL_PATH: args.quant = 4 def load_video(video_path, strategy='chat'): bridge.set_bridge('torch') with open(video_path, 'rb') as f: mp4_stream = f.read() num_frames = 24 if mp4_stream is not None: decord_vr = VideoReader(io.BytesIO(mp4_stream), ctx=cpu(0)) else: decord_vr = VideoReader(video_path, ctx=cpu(0)) frame_id_list = None total_frames = len(decord_vr) if strategy == 'base': clip_end_sec = 60 clip_start_sec = 0 start_frame = int(clip_start_sec * decord_vr.get_avg_fps()) end_frame = min(total_frames, int(clip_end_sec * decord_vr.get_avg_fps())) if clip_end_sec is not None else total_frames frame_id_list = np.linspace(start_frame, end_frame - 1, num_frames, dtype=int) elif strategy == 'chat': timestamps = decord_vr.get_frame_timestamp(np.arange(total_frames)) timestamps = [i[0] for i in timestamps] max_second = round(max(timestamps)) + 1 frame_id_list = [] for second in range(max_second): closest_num = min(timestamps, key=lambda x: abs(x - second)) index = timestamps.index(closest_num) frame_id_list.append(index) if len(frame_id_list) >= num_frames: break video_data = decord_vr.get_batch(frame_id_list) video_data = video_data.permute(3, 0, 1, 2) return video_data tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, trust_remote_code=True, # padding_side="left" ) if torch.cuda.is_available() and torch.cuda.get_device_properties(0).total_memory < 48 * 1024 ** 3 and not args.quant: print("GPU memory is less than 48GB. Please use cli_demo_multi_gpus.py or pass `--quant 4` or `--quant 8`.") exit() # Load the model if args.quant == 4: model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True, quantization_config=BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_compute_dtype=TORCH_TYPE, ), low_cpu_mem_usage=True ).eval() elif args.quant == 8: model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True, quantization_config=BitsAndBytesConfig( load_in_8bit=True, bnb_4bit_compute_dtype=TORCH_TYPE, ), low_cpu_mem_usage=True ).eval() else: model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=TORCH_TYPE, trust_remote_code=True ).eval().to(DEVICE) while True: strategy = 'base' if 'cogvlm2-video-llama3-base' in MODEL_PATH else 'chat' print(f"using with {strategy} model") video_path = input("video path >>>>> ") if video_path == '': print('You did not enter video path, the following will be a plain text conversation.') video = None else: video = load_video(video_path, strategy=strategy) history = [] while True: query = input("Human:") if query == "clear": break inputs = model.build_conversation_input_ids( tokenizer=tokenizer, query=query, images=[video], history=history, template_version=strategy ) inputs = { 'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE), 'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE), 'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE), 'images': [[inputs['images'][0].to('cuda').to(TORCH_TYPE)]], } gen_kwargs = { "max_new_tokens": 2048, "pad_token_id": 128002, "top_k": 1, "do_sample": True, "top_p": 0.1, "temperature": 0.1, } with torch.no_grad(): outputs = model.generate(**inputs, **gen_kwargs) outputs = outputs[:, inputs['input_ids'].shape[1]:] response = tokenizer.decode(outputs[0], skip_special_tokens=True) print("\nCogVLM2-Video:", response) history.append((query, response))