openai_api.py 8.3 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# coding=utf-8
# Implements API for ChatGLM3-6B in OpenAI's format. (https://platform.openai.com/docs/api-reference/chat)
# Usage: python openai_api.py
# Visit http://localhost:8000/docs for documents.

# 在OpenAI的API中,max_tokens 等价于 HuggingFace 的 max_new_tokens 而不是 max_length,。
# 例如,对于6b模型,设置max_tokens = 8192,则会报错,因为扣除历史记录和提示词后,模型不能输出那么多的tokens。

import os
import time
from contextlib import asynccontextmanager
from typing import List, Literal, Optional, Union

import torch
import uvicorn
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from loguru import logger
from pydantic import BaseModel, Field
from sse_starlette.sse import EventSourceResponse
from transformers import AutoTokenizer, AutoModel

from utils import process_response, generate_chatglm3, generate_stream_chatglm3

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'


@asynccontextmanager
async def lifespan(app: FastAPI):  # collects GPU memory
    yield
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.ipc_collect()


app = FastAPI(lifespan=lifespan)

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class ModelCard(BaseModel):
    id: str
    object: str = "model"
    created: int = Field(default_factory=lambda: int(time.time()))
    owned_by: str = "owner"
    root: Optional[str] = None
    parent: Optional[str] = None
    permission: Optional[list] = None


class ModelList(BaseModel):
    object: str = "list"
    data: List[ModelCard] = []


class FunctionCallResponse(BaseModel):
    name: Optional[str] = None
    arguments: Optional[str] = None


class ChatMessage(BaseModel):
    role: Literal["user", "assistant", "system", "function"]
    content: str = None
    name: Optional[str] = None
    function_call: Optional[FunctionCallResponse] = None


class DeltaMessage(BaseModel):
    role: Optional[Literal["user", "assistant", "system"]] = None
    content: Optional[str] = None
    function_call: Optional[FunctionCallResponse] = None


class ChatCompletionRequest(BaseModel):
    model: str
    messages: List[ChatMessage]
    temperature: Optional[float] = 0.8
    top_p: Optional[float] = 0.8
    max_tokens: Optional[int] = None
    stream: Optional[bool] = False
    functions: Optional[Union[dict, List[dict]]] = None
    # Additional parameters
    repetition_penalty: Optional[float] = 1.1


class ChatCompletionResponseChoice(BaseModel):
    index: int
    message: ChatMessage
    finish_reason: Literal["stop", "length", "function_call"]


class ChatCompletionResponseStreamChoice(BaseModel):
    index: int
    delta: DeltaMessage
    finish_reason: Optional[Literal["stop", "length", "function_call"]]


class UsageInfo(BaseModel):
    prompt_tokens: int = 0
    total_tokens: int = 0
    completion_tokens: Optional[int] = 0


class ChatCompletionResponse(BaseModel):
    model: str
    object: Literal["chat.completion", "chat.completion.chunk"]
    choices: List[Union[ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice]]
    created: Optional[int] = Field(default_factory=lambda: int(time.time()))
    usage: Optional[UsageInfo] = None


@app.get("/v1/models", response_model=ModelList)
async def list_models():
    model_card = ModelCard(id="chatglm3-6b")
    return ModelList(data=[model_card])


@app.post("/v1/chat/completions", response_model=ChatCompletionResponse)
async def create_chat_completion(request: ChatCompletionRequest):
    global model, tokenizer

    if len(request.messages) < 1 or request.messages[-1].role == "assistant":
        raise HTTPException(status_code=400, detail="Invalid request")

    gen_params = dict(
        messages=request.messages,
        temperature=request.temperature,
        top_p=request.top_p,
        max_tokens=request.max_tokens or 1024,
        echo=False,
        stream=request.stream,
        repetition_penalty=request.repetition_penalty,
        functions=request.functions,
    )

    logger.debug(f"==== request ====\n{gen_params}")

    if request.stream:
        generate = predict(request.model, gen_params)
        return EventSourceResponse(generate, media_type="text/event-stream")

    response = generate_chatglm3(model, tokenizer, gen_params)

    # Remove the first newline character
    if response["text"].startswith("\n"):
        response["text"] = response["text"][1:]
    response["text"] = response["text"].strip()
    usage = UsageInfo()
    function_call, finish_reason = None, "stop"
    if request.functions:
        try:
            function_call = process_response(response["text"], use_tool=True)
        except:
            logger.warning("Failed to parse tool call, maybe the response is not a tool call or have been answered.")

    if isinstance(function_call, dict):
        finish_reason = "function_call"
        function_call = FunctionCallResponse(**function_call)

    message = ChatMessage(
        role="assistant",
        content=response["text"],
        function_call=function_call if isinstance(function_call, FunctionCallResponse) else None,
    )

    logger.debug(f"==== message ====\n{message}")

    choice_data = ChatCompletionResponseChoice(
        index=0,
        message=message,
        finish_reason=finish_reason,
    )
    task_usage = UsageInfo.model_validate(response["usage"])
    for usage_key, usage_value in task_usage.model_dump().items():
        setattr(usage, usage_key, getattr(usage, usage_key) + usage_value)
    return ChatCompletionResponse(model=request.model, choices=[choice_data], object="chat.completion", usage=usage)


async def predict(model_id: str, params: dict):
    global model, tokenizer

    choice_data = ChatCompletionResponseStreamChoice(
        index=0,
        delta=DeltaMessage(role="assistant"),
        finish_reason=None
    )
    chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
    yield "{}".format(chunk.model_dump_json(exclude_unset=True))

    previous_text = ""
    for new_response in generate_stream_chatglm3(model, tokenizer, params):
        decoded_unicode = new_response["text"]
        delta_text = decoded_unicode[len(previous_text):]
        previous_text = decoded_unicode

        finish_reason = new_response["finish_reason"]
        if len(delta_text) == 0 and finish_reason != "function_call":
            continue

        function_call = None
        if finish_reason == "function_call":
            try:
                function_call = process_response(decoded_unicode, use_tool=True)
            except:
                logger.warning("Failed to parse tool call, maybe the response is not a tool call or have been answered.")

        if isinstance(function_call, dict):
            function_call = FunctionCallResponse(**function_call)

        delta = DeltaMessage(
            content=delta_text,
            role="assistant",
            function_call=function_call if isinstance(function_call, FunctionCallResponse) else None,
        )

        choice_data = ChatCompletionResponseStreamChoice(
            index=0,
            delta=delta,
            finish_reason=finish_reason
        )
        chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
        yield "{}".format(chunk.model_dump_json(exclude_unset=True))

    choice_data = ChatCompletionResponseStreamChoice(
        index=0,
        delta=DeltaMessage(),
        finish_reason="stop"
    )
    chunk = ChatCompletionResponse(model=model_id, choices=[choice_data], object="chat.completion.chunk")
    yield "{}".format(chunk.model_dump_json(exclude_unset=True))
    yield '[DONE]'


if __name__ == "__main__":

    tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_PATH, trust_remote_code=True)
    if 'cuda' in DEVICE:  # AMD, NVIDIA GPU can use Half Precision
        model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).to(DEVICE).eval()
    else:  # CPU, Intel GPU and other GPU can use Float16 Precision Only
        model = AutoModel.from_pretrained(MODEL_PATH, trust_remote_code=True).float().to(DEVICE).eval()
    uvicorn.run(app, host='0.0.0.0', port=8000, workers=1)