client.py 8.14 KB
Newer Older
zhaoying1's avatar
zhaoying1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
from __future__ import annotations

from collections.abc import Iterable
import os
from typing import Any, Protocol

from huggingface_hub.inference._text_generation import TextGenerationStreamResponse, Token
import streamlit as st
import torch
from transformers import AutoModel, AutoTokenizer, AutoConfig

from conversation import Conversation

TOOL_PROMPT = 'Answer the following questions as best as you can. You have access to the following tools:'

MODEL_PATH = os.environ.get('MODEL_PATH', 'THUDM/chatglm3-6b')
PT_PATH = os.environ.get('PT_PATH', None)
TOKENIZER_PATH = os.environ.get("TOKENIZER_PATH", MODEL_PATH)
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

# for Mac Computer like M1
# You Need Use Pytorch compiled with Metal
# DEVICE = 'mps'

# for AMD gpu likes MI100 (Not Official Steady Support yet)
# You Need Use Pytorch compiled with ROCm
# DEVICE = 'cuda'

# for Intel gpu likes A770 (Not Official Steady Support yet)
# You Need Use Pytorch compiled with oneDNN and install intel-extension-for-pytorch
# import intel_extension_for_pytorch as ipex
# DEVICE = 'xpu'

# for Moore Threads gpu like MTT S80 (Not Official Steady Support yet)
# You Need Use Pytorch compiled with Musa
# DEVICE = 'musa'


@st.cache_resource
def get_client() -> Client:
    client = HFClient(MODEL_PATH, TOKENIZER_PATH, PT_PATH, DEVICE)
    return client


class Client(Protocol):
    def generate_stream(self,
                        system: str | None,
                        tools: list[dict] | None,
                        history: list[Conversation],
                        **parameters: Any
                        ) -> Iterable[TextGenerationStreamResponse]:
        ...


def stream_chat(self, tokenizer, query: str, history: list[tuple[str, str]] = None, role: str = "user",
                past_key_values=None, max_length: int = 8192, do_sample=True, top_p=0.8, temperature=0.8,
                repetition_penalty=1.0, length_penalty=1.0, num_beams=1,
                logits_processor=None, return_past_key_values=False, **kwargs):
    from transformers.generation.logits_process import LogitsProcessor
    from transformers.generation.utils import LogitsProcessorList

    class InvalidScoreLogitsProcessor(LogitsProcessor):
        def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor) -> torch.FloatTensor:
            if torch.isnan(scores).any() or torch.isinf(scores).any():
                scores.zero_()
                scores[..., 5] = 5e4
            return scores

    if history is None:
        history = []
    if logits_processor is None:
        logits_processor = LogitsProcessorList()
    logits_processor.append(InvalidScoreLogitsProcessor())
    eos_token_id = [tokenizer.eos_token_id, tokenizer.get_command("<|user|>"),
                    tokenizer.get_command("<|observation|>")]
    gen_kwargs = {"max_length": max_length,
                  "do_sample": do_sample,
                  "top_p": top_p,
                  "temperature": temperature,
                  "logits_processor": logits_processor,
                  "repetition_penalty": repetition_penalty,
                  "length_penalty": length_penalty,
                  "num_beams": num_beams,
                  **kwargs
                  }

    print(gen_kwargs)
    if past_key_values is None:
        inputs = tokenizer.build_chat_input(query, history=history, role=role)
    else:
        inputs = tokenizer.build_chat_input(query, role=role)
    inputs = inputs.to(self.device)
    if past_key_values is not None:
        past_length = past_key_values[0][0].shape[0]
        if self.transformer.pre_seq_len is not None:
            past_length -= self.transformer.pre_seq_len
        inputs.position_ids += past_length
        attention_mask = inputs.attention_mask
        attention_mask = torch.cat((attention_mask.new_ones(1, past_length), attention_mask), dim=1)
        inputs['attention_mask'] = attention_mask
    history.append({"role": role, "content": query})
    print("input_shape>", inputs['input_ids'].shape)

    input_sequence_length = inputs['input_ids'].shape[1]

    if max_length < input_sequence_length <= self.config.seq_length:
        yield "Current input sequence length {} exceeds sequence length set in generation parameters {}. The maximum model sequence length is {}. You may adjust the generation parameter to enable longer chat history.".format(
            input_sequence_length, max_length, self.config.seq_length
        ), history
        return

    if input_sequence_length > self.config.seq_length:
        yield "Current input sequence length {} exceeds maximum model sequence length {}. Unable to generate tokens.".format(
            input_sequence_length, self.config.seq_length
        ), history
        return

    for outputs in self.stream_generate(**inputs, past_key_values=past_key_values,
                                        eos_token_id=eos_token_id, return_past_key_values=return_past_key_values,
                                        **gen_kwargs):
        if return_past_key_values:
            outputs, past_key_values = outputs
        outputs = outputs.tolist()[0][len(inputs["input_ids"][0]):]
        response = tokenizer.decode(outputs)
        if response and response[-1] != "�":
            new_history = history
            if return_past_key_values:
                yield response, new_history, past_key_values
            else:
                yield response, new_history


class HFClient(Client):
    def __init__(self, model_path: str, tokenizer_path: str, pt_checkpoint: str | None = None, DEVICE = 'cpu'):
        self.model_path = model_path
        self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path, trust_remote_code=True)

        if pt_checkpoint is not None:
            config = AutoConfig.from_pretrained(model_path, trust_remote_code=True, pre_seq_len=128)
            self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True, config=config)
            prefix_state_dict = torch.load(os.path.join(pt_checkpoint, "pytorch_model.bin"))
            new_prefix_state_dict = {}
            for k, v in prefix_state_dict.items():
                if k.startswith("transformer.prefix_encoder."):
                    new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
            print("Loaded from pt checkpoints", new_prefix_state_dict.keys())
            self.model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
        else:
            self.model = AutoModel.from_pretrained(model_path, trust_remote_code=True)

        self.model = self.model.to(DEVICE).eval() if 'cuda' in DEVICE else self.model.float().to(DEVICE).eval()


    def generate_stream(self,
                        system: str | None,
                        tools: list[dict] | None,
                        history: list[Conversation],
                        **parameters: Any
                        ) -> Iterable[TextGenerationStreamResponse]:
        chat_history = [{
            'role': 'system',
            'content': system if not tools else TOOL_PROMPT,
        }]

        if tools:
            chat_history[0]['tools'] = tools

        for conversation in history[:-1]:
            chat_history.append({
                'role': str(conversation.role).removeprefix('<|').removesuffix('|>'),
                'content': conversation.content,
            })

        query = history[-1].content
        role = str(history[-1].role).removeprefix('<|').removesuffix('|>')

        text = ''

        for new_text, _ in stream_chat(self.model,
                                       self.tokenizer,
                                       query,
                                       chat_history,
                                       role,
                                       **parameters,
                                       ):
            word = new_text.removeprefix(text)
            word_stripped = word.strip()
            text = new_text
            yield TextGenerationStreamResponse(
                generated_text=text,
                token=Token(
                    id=0,
                    logprob=0,
                    text=word,
                    special=word_stripped.startswith('<|') and word_stripped.endswith('|>'),
                )
            )