base_trainer.py 4.27 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
import torch
from progress.bar import Bar
from models.data_parallel import DataParallel
from utils.utils import AverageMeter


class ModleWithLoss(torch.nn.Module):
    def __init__(self, model, loss):
        super(ModleWithLoss, self).__init__()
        self.model = model
        self.loss = loss

    def forward(self, batch):
        outputs = self.model(batch['input'])
chenych's avatar
chenych committed
20
        loss, loss_stats = self.loss(outputs, batch) # 输入
chenych's avatar
chenych committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        return outputs[-1], loss, loss_stats


class BaseTrainer(object):
    def __init__(self, opt, model, optimizer=None):
        self.opt = opt
        self.optimizer = optimizer
        self.loss_stats, self.loss = self._get_losses(opt)
        self.model_with_loss = ModleWithLoss(model, self.loss)

    def set_device(self, gpus, chunk_sizes, device):
        if len(gpus) > 1:
            self.model_with_loss = DataParallel(
                self.model_with_loss, device_ids=gpus,
                chunk_sizes=chunk_sizes).to(device)

        else:
            self.model_with_loss = self.model_with_loss.to(device)

        for state in self.optimizer.state.values():
            for k, v in state.items():
                if isinstance(v, torch.Tensor):
                    state[k] = v.to(device=device, non_blocking=True)

    def run_epoch(self, phase, epoch, data_loader):
        model_with_loss = self.model_with_loss
        if phase == 'train':
            model_with_loss.train()
        else:
            if len(self.opt.gpus) > 1:
                model_with_loss = self.model_with_loss.module
            model_with_loss.eval()
            torch.cuda.empty_cache()

        opt = self.opt
        results = {}
        data_time, batch_time = AverageMeter(), AverageMeter()
        avg_loss_stats = {l: AverageMeter() for l in self.loss_stats}
        num_iters = len(data_loader) if opt.num_iters < 0 else opt.num_iters
        bar = Bar('{}/{}'.format(opt.task, opt.exp_id), max=num_iters)
        end = time.time()
        for iter_id, batch in enumerate(data_loader):
            if iter_id >= num_iters:
                break
            data_time.update(time.time() - end)

            for k in batch:
                if k != 'meta':
                    batch[k] = batch[k].to(
                        device=opt.device, non_blocking=True)
            output, loss, loss_stats = model_with_loss(batch)
            loss = loss.mean()
            if phase == 'train':
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            batch_time.update(time.time() - end)
            end = time.time()

            Bar.suffix = '{phase}: [{0}]|Tot: {total:} |ETA: {eta:} '.format(
                epoch, phase=phase, total=bar.elapsed_td, eta=bar.eta_td)

            for l in avg_loss_stats:
                avg_loss_stats[l].update(
                    loss_stats[l].mean().item(), batch['input'].size(0))
                Bar.suffix = Bar.suffix + \
                    '|{} {:.4f} '.format(l, avg_loss_stats[l].avg)
            if not opt.hide_data_time:
                Bar.suffix = Bar.suffix + '|Data {dt.val:.3f}s({dt.avg:.3f}s) ' \
                    '|Net {bt.avg:.3f}s'.format(dt=data_time, bt=batch_time)
            if opt.print_iter > 0:
                if iter_id % opt.print_iter == 0:
                    print('{}/{}| {}'.format(opt.task, opt.exp_id, Bar.suffix))
            else:
                bar.next()

            if opt.debug > 0:
                self.debug(batch, output, iter_id)

            if opt.test:
                self.save_result(output, batch, results)
            del output, loss, loss_stats

        bar.finish()
        ret = {k: v.avg for k, v in avg_loss_stats.items()}
        ret['time'] = bar.elapsed_td.total_seconds() / 60.
        return ret, results

    def debug(self, batch, output, iter_id):
        raise NotImplementedError

    def save_result(self, output, batch, results):
        raise NotImplementedError

    def _get_losses(self, opt):
        raise NotImplementedError

    def val(self, epoch, data_loader):
        return self.run_epoch('val', epoch, data_loader)

    def train(self, epoch, data_loader):
        return self.run_epoch('train', epoch, data_loader)