base_trainer.py 4.28 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import time
import torch
from progress.bar import Bar
from models.data_parallel import DataParallel
from utils.utils import AverageMeter


class ModleWithLoss(torch.nn.Module):
    def __init__(self, model, loss):
        super(ModleWithLoss, self).__init__()
        self.model = model
        self.loss = loss

    def forward(self, batch):
        outputs = self.model(batch['input'])
        loss, loss_stats = self.loss(outputs, batch)          # 输入
        return outputs[-1], loss, loss_stats


class BaseTrainer(object):
    def __init__(self, opt, model, optimizer=None):
        self.opt = opt
        self.optimizer = optimizer
        self.loss_stats, self.loss = self._get_losses(opt)
        self.model_with_loss = ModleWithLoss(model, self.loss)

    def set_device(self, gpus, chunk_sizes, device):
        if len(gpus) > 1:
            self.model_with_loss = DataParallel(
                self.model_with_loss, device_ids=gpus,
                chunk_sizes=chunk_sizes).to(device)

        else:
            self.model_with_loss = self.model_with_loss.to(device)

        for state in self.optimizer.state.values():
            for k, v in state.items():
                if isinstance(v, torch.Tensor):
                    state[k] = v.to(device=device, non_blocking=True)

    def run_epoch(self, phase, epoch, data_loader):
        model_with_loss = self.model_with_loss
        if phase == 'train':
            model_with_loss.train()
        else:
            if len(self.opt.gpus) > 1:
                model_with_loss = self.model_with_loss.module
            model_with_loss.eval()
            torch.cuda.empty_cache()

        opt = self.opt
        results = {}
        data_time, batch_time = AverageMeter(), AverageMeter()
        avg_loss_stats = {l: AverageMeter() for l in self.loss_stats}
        num_iters = len(data_loader) if opt.num_iters < 0 else opt.num_iters
        bar = Bar('{}/{}'.format(opt.task, opt.exp_id), max=num_iters)
        end = time.time()
        for iter_id, batch in enumerate(data_loader):
            if iter_id >= num_iters:
                break
            data_time.update(time.time() - end)

            for k in batch:
                if k != 'meta':
                    batch[k] = batch[k].to(
                        device=opt.device, non_blocking=True)
            output, loss, loss_stats = model_with_loss(batch)
            loss = loss.mean()
            if phase == 'train':
                self.optimizer.zero_grad()
                loss.backward()
                self.optimizer.step()
            batch_time.update(time.time() - end)
            end = time.time()

            Bar.suffix = '{phase}: [{0}]|Tot: {total:} |ETA: {eta:} '.format(
                epoch, phase=phase, total=bar.elapsed_td, eta=bar.eta_td)

            for l in avg_loss_stats:
                avg_loss_stats[l].update(
                    loss_stats[l].mean().item(), batch['input'].size(0))
                Bar.suffix = Bar.suffix + \
                    '|{} {:.4f} '.format(l, avg_loss_stats[l].avg)
            if not opt.hide_data_time:
                Bar.suffix = Bar.suffix + '|Data {dt.val:.3f}s({dt.avg:.3f}s) ' \
                    '|Net {bt.avg:.3f}s'.format(dt=data_time, bt=batch_time)
            if opt.print_iter > 0:
                if iter_id % opt.print_iter == 0:
                    print('{}/{}| {}'.format(opt.task, opt.exp_id, Bar.suffix))
            else:
                bar.next()

            if opt.debug > 0:
                self.debug(batch, output, iter_id)

            if opt.test:
                self.save_result(output, batch, results)
            del output, loss, loss_stats

        bar.finish()
        ret = {k: v.avg for k, v in avg_loss_stats.items()}
        ret['time'] = bar.elapsed_td.total_seconds() / 60.
        return ret, results

    def debug(self, batch, output, iter_id):
        raise NotImplementedError

    def save_result(self, output, batch, results):
        raise NotImplementedError

    def _get_losses(self, opt):
        raise NotImplementedError

    def val(self, epoch, data_loader):
        return self.run_epoch('val', epoch, data_loader)

    def train(self, epoch, data_loader):
        return self.run_epoch('train', epoch, data_loader)