centerface_hp.py 4.66 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os

chenych's avatar
chenych committed
8
9
from pycocotools.cocoeval import COCOeval

chenych's avatar
chenych committed
10
import torch.utils.data as data
chenych's avatar
chenych committed
11
12
import numpy as np
import pycocotools.coco as coco
chenych's avatar
chenych committed
13
14
15
16
17
18
19
20
21
22


class FACEHP(data.Dataset):
    num_classes = 1
    num_joints = 5
    default_resolution = [800, 800]
    mean = np.array([0.40789654, 0.44719302, 0.47026115],
                    dtype=np.float32).reshape(1, 1, 3)
    std = np.array([0.28863828, 0.27408164, 0.27809835],
                   dtype=np.float32).reshape(1, 1, 3)
chenych's avatar
chenych committed
23
24
    # 翻转的关键点在关键点矩阵中的索引
    flip_idx = [[0, 1], [3, 4]]
chenych's avatar
chenych committed
25
26
27
28
29
30
31
32
33
34
35
36

    def __init__(self, opt, split):
        super(FACEHP, self).__init__()
        self.edges = [[0, 1], [0, 2], [1, 3], [2, 4],
                      [4, 6], [3, 5], [5, 6],
                      [5, 7], [7, 9], [6, 8], [8, 10],
                      [6, 12], [5, 11], [11, 12],
                      [12, 14], [14, 16], [11, 13], [13, 15]]

        self.acc_idxs = [1, 2, 3, 4]
        self.data_dir = opt.data_dir
        _ann_name = {'train': 'train', 'val': 'val'}
chenych's avatar
chenych committed
37
38
        # 图片所在地址
        self.img_dir = os.path.join(self.data_dir, f'images/{_ann_name[split]}')
39
        print('===>', self.img_dir)
chenych's avatar
chenych committed
40
41
        if split == 'val':
            self.annot_path = os.path.join(
chenych's avatar
chenych committed
42
43
                self.data_dir, 'labels',
                '{}_face.json').format(_ann_name[split])
chenych's avatar
chenych committed
44
45
        else:
            self.annot_path = os.path.join(
chenych's avatar
chenych committed
46
47
                self.data_dir, 'labels',
                '{}_face.json').format(_ann_name[split])
chenych's avatar
chenych committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        self.max_objs = 32
        self._data_rng = np.random.RandomState(123)
        self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571],
                                 dtype=np.float32)
        self._eig_vec = np.array([
            [-0.58752847, -0.69563484, 0.41340352],
            [-0.5832747, 0.00994535, -0.81221408],
            [-0.56089297, 0.71832671, 0.41158938]
        ], dtype=np.float32)
        self.split = split
        self.opt = opt

        print('==> initializing centerface key point {} data.'.format(split))
        self.coco = coco.COCO(self.annot_path)
        image_ids = self.coco.getImgIds()

        if split == 'train':
            self.images = []
            for img_id in image_ids:
                idxs = self.coco.getAnnIds(imgIds=[img_id])
                if len(idxs) > 0:
                    self.images.append(img_id)
        else:
            self.images = image_ids
        self.num_samples = len(self.images)
        print('Loaded {} {} samples'.format(split, self.num_samples))

    def _to_float(self, x):
        return float("{:.2f}".format(x))

    def convert_eval_format(self, all_bboxes):
        # import pdb; pdb.set_trace()
        detections = []
        for image_id in all_bboxes:
            for cls_ind in all_bboxes[image_id]:
                category_id = 1
                for dets in all_bboxes[image_id][cls_ind]:
                    bbox = dets[:4]
                    bbox[2] -= bbox[0]
                    bbox[3] -= bbox[1]
                    score = dets[4]
                    bbox_out = list(map(self._to_float, bbox))
                    keypoints = np.concatenate([
                        np.array(dets[5:39], dtype=np.float32).reshape(-1, 2),
                        np.ones((17, 1), dtype=np.float32)], axis=1).reshape(51).tolist()
                    keypoints = list(map(self._to_float, keypoints))

                    detection = {
                        "image_id": int(image_id),
                        "category_id": int(category_id),
                        "bbox": bbox_out,
                        "score": float("{:.2f}".format(score)),
                        "keypoints": keypoints
                    }
                    detections.append(detection)
        return detections

    def __len__(self):
        return self.num_samples

    def save_results(self, results, save_dir):
        json.dump(self.convert_eval_format(results),
                  open('{}/results.json'.format(save_dir), 'w'))

    def run_eval(self, results, save_dir):
        # result_json = os.path.join(opt.save_dir, "results.json")
        # detections  = convert_eval_format(all_boxes)
        # json.dump(detections, open(result_json, "w"))
        self.save_results(results, save_dir)
        coco_dets = self.coco.loadRes('{}/results.json'.format(save_dir))
        coco_eval = COCOeval(self.coco, coco_dets, "keypoints")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()
        coco_eval = COCOeval(self.coco, coco_dets, "bbox")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()