"domain_adaptation/pixel_domain_adaptation/README.md" did not exist on "ac0829fa2b94336a79af962c9cffbf283a81b6c3"
centerface_hp.py 4.66 KB
Newer Older
chenych's avatar
chenych committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import pycocotools.coco as coco
from pycocotools.cocoeval import COCOeval
import numpy as np
import json
import os

import torch.utils.data as data


class FACEHP(data.Dataset):
    num_classes = 1
    num_joints = 5
    default_resolution = [800, 800]
    mean = np.array([0.40789654, 0.44719302, 0.47026115],
                    dtype=np.float32).reshape(1, 1, 3)
    std = np.array([0.28863828, 0.27408164, 0.27809835],
                   dtype=np.float32).reshape(1, 1, 3)
    flip_idx = [[0, 1], [3, 4]]             # 翻转的关键点在关键点矩阵中的索引

    def __init__(self, opt, split):
        super(FACEHP, self).__init__()
        self.edges = [[0, 1], [0, 2], [1, 3], [2, 4],
                      [4, 6], [3, 5], [5, 6],
                      [5, 7], [7, 9], [6, 8], [8, 10],
                      [6, 12], [5, 11], [11, 12],
                      [12, 14], [14, 16], [11, 13], [13, 15]]

        self.acc_idxs = [1, 2, 3, 4]
        self.data_dir = opt.data_dir
        _ann_name = {'train': 'train', 'val': 'val'}
35
36
        self.img_dir = os.path.join(self.data_dir, f'images/{_ann_name[split]}')  # 训练图片所在地址
        print('===>', self.img_dir)
chenych's avatar
chenych committed
37
38
        if split == 'val':
            self.annot_path = os.path.join(
chenych's avatar
chenych committed
39
40
                self.data_dir, 'labels',
                '{}_face.json').format(_ann_name[split])
chenych's avatar
chenych committed
41
42
        else:
            self.annot_path = os.path.join(
chenych's avatar
chenych committed
43
44
                self.data_dir, 'labels',
                '{}_face.json').format(_ann_name[split])
chenych's avatar
chenych committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
        self.max_objs = 32
        self._data_rng = np.random.RandomState(123)
        self._eig_val = np.array([0.2141788, 0.01817699, 0.00341571],
                                 dtype=np.float32)
        self._eig_vec = np.array([
            [-0.58752847, -0.69563484, 0.41340352],
            [-0.5832747, 0.00994535, -0.81221408],
            [-0.56089297, 0.71832671, 0.41158938]
        ], dtype=np.float32)
        self.split = split
        self.opt = opt

        print('==> initializing centerface key point {} data.'.format(split))
        self.coco = coco.COCO(self.annot_path)
        image_ids = self.coco.getImgIds()

        if split == 'train':
            self.images = []
            for img_id in image_ids:
                idxs = self.coco.getAnnIds(imgIds=[img_id])
                if len(idxs) > 0:
                    self.images.append(img_id)
        else:
            self.images = image_ids
        self.num_samples = len(self.images)
        print('Loaded {} {} samples'.format(split, self.num_samples))

    def _to_float(self, x):
        return float("{:.2f}".format(x))

    def convert_eval_format(self, all_bboxes):
        # import pdb; pdb.set_trace()
        detections = []
        for image_id in all_bboxes:
            for cls_ind in all_bboxes[image_id]:
                category_id = 1
                for dets in all_bboxes[image_id][cls_ind]:
                    bbox = dets[:4]
                    bbox[2] -= bbox[0]
                    bbox[3] -= bbox[1]
                    score = dets[4]
                    bbox_out = list(map(self._to_float, bbox))
                    keypoints = np.concatenate([
                        np.array(dets[5:39], dtype=np.float32).reshape(-1, 2),
                        np.ones((17, 1), dtype=np.float32)], axis=1).reshape(51).tolist()
                    keypoints = list(map(self._to_float, keypoints))

                    detection = {
                        "image_id": int(image_id),
                        "category_id": int(category_id),
                        "bbox": bbox_out,
                        "score": float("{:.2f}".format(score)),
                        "keypoints": keypoints
                    }
                    detections.append(detection)
        return detections

    def __len__(self):
        return self.num_samples

    def save_results(self, results, save_dir):
        json.dump(self.convert_eval_format(results),
                  open('{}/results.json'.format(save_dir), 'w'))

    def run_eval(self, results, save_dir):
        # result_json = os.path.join(opt.save_dir, "results.json")
        # detections  = convert_eval_format(all_boxes)
        # json.dump(detections, open(result_json, "w"))
        self.save_results(results, save_dir)
        coco_dets = self.coco.loadRes('{}/results.json'.format(save_dir))
        coco_eval = COCOeval(self.coco, coco_dets, "keypoints")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()
        coco_eval = COCOeval(self.coco, coco_dets, "bbox")
        coco_eval.evaluate()
        coco_eval.accumulate()
        coco_eval.summarize()