glm_loader.py 6.18 KB
Newer Older
yuguo960516's avatar
bloom  
yuguo960516 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# coding=utf-8
# Copyright 2021 The OneFlow Authors. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json

from libai.models.utils import ModelLoaderHuggerFace, ModelLoaderLiBai


class GLMLoaderHuggerFace(ModelLoaderHuggerFace):
    def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs):
        super().__init__(model, libai_cfg, pretrained_model_path, **kwargs)

        """NOTE: base_model_prefix_1 is GLM's prefix in Transformers.
        base_model_prefix_2 is GLM's prefix in LiBai."""
        self.base_model_prefix_1 = "glm"
        self.base_model_prefix_2 = "glm"

    def _convert_state_dict(self, flow_state_dict, cfg):
        """Convert state_dict's keys to match model.

        Args:
            flow_state_dict (OrderedDict): model state dict.
            cfg (dict): model's default config dict in LiBai.

        Returns:
            OrderedDict: flow state dict.
        """
        # The converted checkpoint.
        oneflow_state_dict = flow_state_dict.copy()
        old_keys = list(oneflow_state_dict.keys())

        # Get configs
        num_heads = cfg.get("num_attention_heads")
        hidden_size = cfg.get("hidden_size")
        head_size = int(hidden_size / num_heads)

        # prefix
        has_prefix = any(s.startswith(self.base_model_prefix_1) for s in oneflow_state_dict)
        prefix1 = self.base_model_prefix_1 + "." if has_prefix else ""
        prefix2 = "glm." if has_prefix else ""

        # Convert Embedding layers.
        new_key = prefix2 + "embeddings.word_embeddings.weight"
        old_keys.remove(prefix1 + "word_embeddings.weight")
        oneflow_state_dict[new_key] = oneflow_state_dict.pop(prefix1 + "word_embeddings.weight")

        if cfg.get("block_position_encoding", False) is True:
            new_key = prefix2 + "embeddings.position_embeddings.weight"
            old_keys.remove(prefix1 + "transformer.position_embeddings.weight")
            oneflow_state_dict[new_key] = oneflow_state_dict.pop(
                prefix1 + "transformer.position_embeddings.weight"
            )

            new_key = prefix2 + "embeddings.block_position_embeddings.weight"
            old_keys.remove(prefix1 + "transformer.block_position_embeddings.weight")
            oneflow_state_dict[new_key] = oneflow_state_dict.pop(
                prefix1 + "transformer.block_position_embeddings.weight"
            )

        # Convert other layers.
        for key in old_keys:
            if "query_key_value" in key:
                qkv = oneflow_state_dict.pop(key)
                qkv = self._fix_qkv_ordering(qkv, head_size, num_heads)
                oneflow_state_dict[prefix2 + key] = qkv
            else:
                oneflow_state_dict[prefix2 + key] = oneflow_state_dict.pop(key)

        return oneflow_state_dict

    def _load_config_from_json(self, config_file):
        """load config from `config.json`, and update default config.

        Args:
            config_file (str): Path of config file.
        """
        with open(config_file, mode="r", encoding="utf-8") as f:
            cfg_dict = json.load(f)
        # update libai_cfg by config.json
        for k, v in cfg_dict.items():
            self._update_cfg(k, v)

        # update libai_cfg by kwargs
        for k, v in self.kwargs.items():
            self._update_cfg(k, v)

        self._update_cfg_log()


class GLMLoaderLiBai(ModelLoaderLiBai):
    def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs):
        super().__init__(model, libai_cfg, pretrained_model_path, **kwargs)
        self.base_model_prefix_2 = "glm"

    def _convert_state_dict(self, flow_state_dict, cfg):
        """Convert state_dict's keys to match model.

        Args:
            flow_state_dict (OrderedDict): model state dict.
            cfg (dict): model's default config dict in LiBai.

        Returns:
            OrderedDict: flow state dict.
        """
        # The converted checkpoint.
        oneflow_state_dict = flow_state_dict.copy()
        old_keys = list(oneflow_state_dict.keys())

        # Get configs
        num_heads = cfg.get("num_attention_heads")
        hidden_size = cfg.get("hidden_size")
        head_size = int(hidden_size / num_heads)

        # prefix
        has_prefix = any(s.startswith(self.base_model_prefix_1) for s in oneflow_state_dict)
        prefix1 = self.base_model_prefix_1 + "." if has_prefix else ""
        prefix2 = "glm." if has_prefix else ""

        # Convert Embedding layers.
        new_key = prefix2 + "embeddings.word_embeddings.weight"
        old_keys.remove(prefix1 + "word_embeddings.weight")
        oneflow_state_dict[new_key] = oneflow_state_dict.pop(prefix1 + "word_embeddings.weight")

        if cfg.get("block_position_encoding", False) is True:
            new_key = prefix2 + "embeddings.position_embeddings.weight"
            old_keys.remove(prefix1 + "transformer.position_embeddings.weight")
            oneflow_state_dict[new_key] = oneflow_state_dict.pop(
                prefix1 + "transformer.position_embeddings.weight"
            )

            new_key = prefix2 + "embeddings.block_position_embeddings.weight"
            old_keys.remove(prefix1 + "transformer.block_position_embeddings.weight")
            oneflow_state_dict[new_key] = oneflow_state_dict.pop(
                prefix1 + "transformer.block_position_embeddings.weight"
            )

        # Convert other layers.
        for key in old_keys:
            if "query_key_value" in key:
                qkv = oneflow_state_dict.pop(key)
                qkv = self._fix_qkv_ordering(qkv, head_size, num_heads)
                oneflow_state_dict[prefix2 + key] = qkv
            else:
                oneflow_state_dict[prefix2 + key] = oneflow_state_dict.pop(key)

        return oneflow_state_dict