# coding=utf-8 # Copyright 2021 The OneFlow Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json from libai.models.utils import ModelLoaderHuggerFace, ModelLoaderLiBai class GLMLoaderHuggerFace(ModelLoaderHuggerFace): def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs): super().__init__(model, libai_cfg, pretrained_model_path, **kwargs) """NOTE: base_model_prefix_1 is GLM's prefix in Transformers. base_model_prefix_2 is GLM's prefix in LiBai.""" self.base_model_prefix_1 = "glm" self.base_model_prefix_2 = "glm" def _convert_state_dict(self, flow_state_dict, cfg): """Convert state_dict's keys to match model. Args: flow_state_dict (OrderedDict): model state dict. cfg (dict): model's default config dict in LiBai. Returns: OrderedDict: flow state dict. """ # The converted checkpoint. oneflow_state_dict = flow_state_dict.copy() old_keys = list(oneflow_state_dict.keys()) # Get configs num_heads = cfg.get("num_attention_heads") hidden_size = cfg.get("hidden_size") head_size = int(hidden_size / num_heads) # prefix has_prefix = any(s.startswith(self.base_model_prefix_1) for s in oneflow_state_dict) prefix1 = self.base_model_prefix_1 + "." if has_prefix else "" prefix2 = "glm." if has_prefix else "" # Convert Embedding layers. new_key = prefix2 + "embeddings.word_embeddings.weight" old_keys.remove(prefix1 + "word_embeddings.weight") oneflow_state_dict[new_key] = oneflow_state_dict.pop(prefix1 + "word_embeddings.weight") if cfg.get("block_position_encoding", False) is True: new_key = prefix2 + "embeddings.position_embeddings.weight" old_keys.remove(prefix1 + "transformer.position_embeddings.weight") oneflow_state_dict[new_key] = oneflow_state_dict.pop( prefix1 + "transformer.position_embeddings.weight" ) new_key = prefix2 + "embeddings.block_position_embeddings.weight" old_keys.remove(prefix1 + "transformer.block_position_embeddings.weight") oneflow_state_dict[new_key] = oneflow_state_dict.pop( prefix1 + "transformer.block_position_embeddings.weight" ) # Convert other layers. for key in old_keys: if "query_key_value" in key: qkv = oneflow_state_dict.pop(key) qkv = self._fix_qkv_ordering(qkv, head_size, num_heads) oneflow_state_dict[prefix2 + key] = qkv else: oneflow_state_dict[prefix2 + key] = oneflow_state_dict.pop(key) return oneflow_state_dict def _load_config_from_json(self, config_file): """load config from `config.json`, and update default config. Args: config_file (str): Path of config file. """ with open(config_file, mode="r", encoding="utf-8") as f: cfg_dict = json.load(f) # update libai_cfg by config.json for k, v in cfg_dict.items(): self._update_cfg(k, v) # update libai_cfg by kwargs for k, v in self.kwargs.items(): self._update_cfg(k, v) self._update_cfg_log() class GLMLoaderLiBai(ModelLoaderLiBai): def __init__(self, model, libai_cfg, pretrained_model_path, **kwargs): super().__init__(model, libai_cfg, pretrained_model_path, **kwargs) self.base_model_prefix_2 = "glm" def _convert_state_dict(self, flow_state_dict, cfg): """Convert state_dict's keys to match model. Args: flow_state_dict (OrderedDict): model state dict. cfg (dict): model's default config dict in LiBai. Returns: OrderedDict: flow state dict. """ # The converted checkpoint. oneflow_state_dict = flow_state_dict.copy() old_keys = list(oneflow_state_dict.keys()) # Get configs num_heads = cfg.get("num_attention_heads") hidden_size = cfg.get("hidden_size") head_size = int(hidden_size / num_heads) # prefix has_prefix = any(s.startswith(self.base_model_prefix_1) for s in oneflow_state_dict) prefix1 = self.base_model_prefix_1 + "." if has_prefix else "" prefix2 = "glm." if has_prefix else "" # Convert Embedding layers. new_key = prefix2 + "embeddings.word_embeddings.weight" old_keys.remove(prefix1 + "word_embeddings.weight") oneflow_state_dict[new_key] = oneflow_state_dict.pop(prefix1 + "word_embeddings.weight") if cfg.get("block_position_encoding", False) is True: new_key = prefix2 + "embeddings.position_embeddings.weight" old_keys.remove(prefix1 + "transformer.position_embeddings.weight") oneflow_state_dict[new_key] = oneflow_state_dict.pop( prefix1 + "transformer.position_embeddings.weight" ) new_key = prefix2 + "embeddings.block_position_embeddings.weight" old_keys.remove(prefix1 + "transformer.block_position_embeddings.weight") oneflow_state_dict[new_key] = oneflow_state_dict.pop( prefix1 + "transformer.block_position_embeddings.weight" ) # Convert other layers. for key in old_keys: if "query_key_value" in key: qkv = oneflow_state_dict.pop(key) qkv = self._fix_qkv_ordering(qkv, head_size, num_heads) oneflow_state_dict[prefix2 + key] = qkv else: oneflow_state_dict[prefix2 + key] = oneflow_state_dict.pop(key) return oneflow_state_dict